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Abstract

The area of Material Requirements Planning ( MRP ) is
receiving major emphasis in the management of operations due to
the financial benefits of efficient deployment of inventory
investment. The issue of lot sizing rule has been one of the most
heavily addressed topics in the MRP area. Prior research in lot
sizing has dealt with single level or multi-level problems with a
single parent product structure. However, real world problens
frequently involve both multiple levels and multiple parents.

To develop a multi~-level lot sizing rule, the dependent
demand relationship between parents and components and common
usage of certain items in producing different finished products
should be considered in some fashion. The objective of this
research is to develop multi-level lot sizing rules that are
simple to understand and can be implemented with ease on an MRP
system, This dissertation proposes a new approach to multi-level
lot sizing for MRP systems.

We formulate a mixed integer programming model for the
multi-level lot sizing problem to facilitate the development of a
multi-level lot sizing algorithm. An examination of sample
solutions obtained by mixed integer programming with the ones
obtained by a sequential application of any single level lot
sizing rules can provide a pattern which would be useful in
developing a recursion algorithm. Exploiting the characteristic

differences among these solutions, a recursion algorithm is
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developed.

Three popular lot sizing rules are modified for the single
level, and multi-level problem as well. The three modified lot
sizing rules operate on the part period accumulation principle
besides their original mechanism.

To evaluate these proposed single level and multi-level lot
sizing heuristics we develop a computer simulation model of an
MRP system and design experiments designed to consider different
demand patterns, different degrees of commonality and different
numbers of levels in product structures. Evaluation criteria

include inventory costs and computing time requirements.
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Chapter 1

Introduction

1.1 Material Requirements Planning

Material requirements planning ( MRP ) was originally seen as
an effective method of ordering inventory. As it evolved, its
major emphasis shifted to scheduling, i.e., establishing and
maintaining valid due dates on orders.

Today, it has been expanded into manufacturing resource
planning ( MRP II ) to include the effective planning of all the
resources of a manufacturing f£irm. The challenge of 1980s has
been to align diverse functions, which a typical manufacturing
organization performs, such as, manufacturing, marketing,
accounting, finance, engineering, so that their individual goals
can be coordinated to meet the business plan through a
communication network, an integrated data base. An integrated
data base places into a common receptacle the data that is
supplied from various areas. Each operating function has access
to the total information available from each unit. The evolution
of MRP to closed-loop MRP to MRP II results in a single game plan
to meet the overall goals of an organization. This is possible
because it ties together strategic, financial, and capacity
planning areas.

Thus, the term MRP has meant different things to different
people., Some think of it as an inventory system, other as a

scheduling system, and still others as a complete closed-loop




production system. However, most would agree that MRP tends to
become the cornerstone of the production system. MRP would reveal
what items are needed, how many are needed, when they will be
needed, and when they should be ordered.

Demand for an item may be classified as either independent or
dependent depending on whether its demand depends on the demand
for other items. The demand for the final product is independent
in that it should be forecasted and is not dependent on the
demand for other items. On the other hand, the demand for lower
level components composing the end product tends to be dependent
in that it is generated from the demand for other items. MRP
works backward from the scheduled due dates of end items to
determine the dates when dependent demand components are ordered.
Dependent demand items are calculated by the MRP system from the
master schedule. Except for lot sizing economics, dependent
demand components should be available when needed, not before and
not after. When work cannot be accomplished on time, MRP can
reschedule planned orders so that priorities are realistic and
meaningful.

The three major inputs of an MRP system are the master
production schedule, the product structure records, also known as
bills of materials ( BOM ) records, and the inventory status
records. The master production schedule ( MPS ) outlines the
production plan for all end items. The product structure records
contain information on all materials, components, or
subassemblies required for each end item. The inventory status

records contain the on-hand and on-order status of inventory




items. MRP takes MPS for end items and determines the gross
requirements for components from the BOM. Gross requirements are
obtained by "cxploding" the end item product structure record
into its lower level requirements. The explosion identifies what
components are required, as well as, how many, to produce a given
quantity of end items. By referring to the inventory status
records, the gross quantities will be netted by subtracting the
available inventory items. When to order is determined by
offsetting ( setting back in time ) the lead times for each
component . Thus, the material requirements for each component are
phased over time in a manner determined by lead times, parent
requirements, and inventory status.

The planning horizon of the master production schedule should
be large enough to cover the cumulative procurement and
production lead times ( "stacked" lead times ) for all components
composing the end products. One-week increments have been found
to be the most practical.( Anderson, Schroeder, Tupy, and White
(1982), Wemmerlov (1979) )

The product structure usually contains several stages from
raw materials to subassemblies to assemblies to end items. The
end product is designated, by convention, as being at level 0,
its immediate components at level 1, and so forth.( see Fig. 1.1
) The numbers in the brackets indicate the usage factors, the
quantity needed for producing one unit of immediate parent. The

usage factor of {1} is usually not indicated.
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Fig. 1.1 Example Product Structure

1.2 Lot Sizing in the MRP System

In general, the lot sizing problem for discrete demand
implies converting a vector of discrete demand for an item into
another vector of planned orders by batching these demands into
lots. The discrete nature of the demand i1s characterized by the
instantaneous depletion of the item's inventory at certain points
in time, e.g., at the beginning of a period, when the item's
inventory is drawn for the assembly of higher-level subassembly
or assembly. On the contrary, in the case of continuous demand,
inventory is consumed gradually at a constant demand rate
throughout the period and/or the entire planning horizon.

Generally speaking, there are two types of important costs
that are involved in making lot size decisions in a manufacturing
situation, namely the setup cost and inventory carrying/holding

cost. The setup cost is the fixed cost that is independent of the




size of the replenishment and is associated with a replenishment.
It usually includes the cost of processing of production orders,
authorization, machine setup, tooling, and even interrupted
production. The cost of carrying items in inventory includes the
opportunity cost of the inventory investment, warehouse expenses,
deterioration of stock, obsolescence, insurance, and taxes. Total
inventory cost for an item‘s certain order schedule is naturally
the sum of these two costs incurred for that particular schedule.

Given a demand vector, one possible way of lot sizing is to
plan production orders whenever they are required and in exactly
the same quantities as required (i.e., Lot for Lot). In this
case, total inventory cost for the resultant order vector
consists of setup costs only. As no inventory is carried, no
carrying cost are incurred. Another possible way is one in which
the demands for all the periods in the planning horizon is
planned in one single order. This order vector would require only
one setup while incurring large carrying costs. These are just
two extreme possibilities and various possiblities exist between
these two extremes. Figure 1.2 illustrates a trade-off between
the two costs, setup and carrying costs for the case of
continuous, constant demand. The same would be true for the
discrete, constant demand case. Total inventory cost is
represented as a funtion of the lot size and the optimal lot size
is where the total costs are at their minimum. This occurs where
the setup cost and carrying costs are equivalent.

In an MRP system, although gross requirements for components

are obtained by exploding the end item product structure record




into its lower level requirements, we still need to decide order
quantities for each item in the system. Thus in such system it is
necessary to incorporate some lot sizing techniques ( even if it
is Lot for Lot ) at all levels simply in order to generate lower
level requirements in the correct time phased format. The
application of a particular lot sizing rule to an item at a given
level affects the gross requirements for components at
subordinate levels. In a multiple level system 1like the MRP
system, the lot sizing problem is to determine the set of order
guantities for all items in the system over its planning horizon
that minimizes the sum of inventory holding and setup cost
incurred in the systen. _

INVENTORY
COSTS

TOTAL COSTS

CARRYING COSTS

SETUP COSTS

LOT SIZE

Fig. 1.2 Total Costs as a Function of the Lot Size

for the Continuous, Constant Demand




As planned orders for higher level items will generate gross
requirements for immediate lower level items, and so on, we
should take this inter-level dependent demand relationship and
commonnality relationship into account when developing lot sizing
rules for the multi-level structure.

Furthermore, there is another factor to be considered before
selecting the lot sizing strategy. An MRP system, in practice,
would require a considerable amount of computer time to determine
schedules of order quantities for items in the whole system. The
computational effort depends on the number of items involved and
frequency of reschedulings. Thus, time-efficient ordering

procedures are of a high priority.
1.3 Objective of this Study

Few areas of management decision making offer more potential
for theory development than problems of the design and operation
of a multi-level production/inventory system. Furthermore, few
areas of management would offer greater pay-ofis for the
application and execution of good management techniques than
inventory control. In order to appreciate this potential, we need
to consider the following facts. Approximately one third of the
current assets of the average US business firm is devoted merely
to inventory. This is about 90% of the same firm's working
capital. Most of this inventory is currently being managed
within multi-level ( multi-echelon ) production / inventory
systems.

The motivation for this study arises from the realization




that although Material Requirements Planning has been available
as a tool for managing manufacturing inventory for over two
decades, little work has been published that addresses the
problem of deciding how much to produce in a batch for items in
multi-level MRP settings.

Most of the recent studies of heuristic lot sizing techniques
for nultiple-level material requirements planning systems have
investigated the application of lot sizing rules derived in the
context of a single level.

In reality, there exist vertical interdependencies between
levels due to the demand at lower levels being derived by the
lot sizing decisions made at immediate higher levels and
horizontal commonalities due to existence of some components
having two or more parents.

In this study, we aim to formulate a mathematical model of
the multi-level 1lot sizing problem and further develop
multi-level 1lot sizing heuristics that account for these two
distinct characteristics ( i.e., dependency and commonality ).
These heuristics should be easy to understand and simple to
implement in practice. We also intend to test the proposed
heuristics in various combination of factors ( i.e., demand
pattern, cost structures, degrees of commonality, number of
levels, etc. ) and compare their performance with other

established heuristics and optimum solutions.




Chapter 2

Review of Literature

For the purpose of review, the taxonomy described by

Krajewski and Ritzman (1977) is used. ( See Figure 2.1. ) We

categorize lot sizing problems in terms of the number of levels

in product structures, the number of products, and the number of

parents and components.

Manufacturing
Organization
I
I |
I I
| I
single multi-
1e\|re1 level
I
I I
I I I |
I | | I
gingle multi- single multi-
product product parent parent
I
S P |
| | I
I I |
single multi- multi-
component component component

Fig. 2.1 A Taxonomy £for Lot Sizing Problems
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2.1 Single Level Research

Prout (1973) reports that multi-stage inventory analysis
is frequently approached by using a set of single stage, single
product inventory models. In practice, most of current MRP users
are reportedly adopting single level lot sizing techniques. Thus
it is useful to examine single level research.

Harris (1915) is credited with devising the classic Economic
Order Quantity ( EOQ ) model for determining the optimal order
quantities when demand is continuous and the steady-state demand
rate is known. It is based on the reasoning that optimum, that is
minipum inventory cost, is at the point where the inventory
carrying cost and setup cost are equal. Although it was
originally developed for continuous, constant demand environment,
the model has been used in the discrete demand situations in
which MRP systems are utilized. The EOQ model no longer provides
optimal lot sizes for the discrete demand case.

Wagner and Whitin (1958) considered discrete, deterministic
demands but with time varying demand rate over a fixed planning
horizon of T periods. In their study, they dropped the assumption
of invariable inventory cost from period to period. Allowing no
stockouts, and assuming no initial inventory, they developed a
dynanmic version of the economic lot size medel which yields the
optimal order quantities for the single level single product
problem. The Wagner-Whitin ( W-W ) algorithm is based on the
dynamic programming formulation. Assuming an order must be

placed in the first period, there are ZT-J‘ possible lot sizing
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combinations, T being total number of periods in the planning
horizon, where only those lots consisting of integral number of
periods of demand are considered. They showed that it is
sufficient to consider only extreme solutions: inventory need not
be carried into a period in which a new replenishment order is
scheduled to arrive. Further, they proved a planning horizon
theorem that, given an optimal schedule for ¢t periods with an
order placed in period t, the schedule for the first t-1 periods
is optimal.

Presumed computational difficulties with Wagner-Whatin's
model have led to a number of heuristic approaches.

Gorham (1968) discussed a method called Least Total Cost
( LTC ) which goes through the product requirements step by step,
accumulating a lot size until a future period t, where the
cumulative inventory carrying costs through period t comes
closest to the setup cost.

Orlicky (1975) presented the Periodic Order Quantity ( POQ )
and Lot for Lot ( L4L ) approaches. The POQ model is a variant of
the EOQ model whereby the economic time interval ( N* ) between
replenishment orders is determined by dividing the economic order
quantity obtained from the EOQ model by an average demand per
period and rounding it off to the nearest integer. Thus, the
order quantity is the sum of demand over the inteval ( t, t+N* ).
On the other hand, the LAL method simply makes the 1lot size equal
to the demand each period.

DeMatteis and Mendoza (1968) developed Part Period Balancing

( PPB ) algorithm which is based on the same reasoning as the EOQ
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model but for a discrete demand setting. PPB heuristic decides
order quantities by accumulating requirements until when the
cumulative inventory carrying cost nearly equals to, bucr does not
exceed setup cost. The look—ahead and look-backward features are
added to account for wide demand variations.

Silver and Meal (1973) outlined a heuristic which selects
the order quantity Q so as to minimize the costs per unit time
over the time period that (Q lasts. Demand for pericd t is
included in the order as long as this results in a reduction in
the average cost per period over the interval up to period t.

Morton (1978) developed a dynamic programming algorithm for
the model with backlogging. Barbosa and Friedman (1978) proposed
a general model with no backorder and a known finite planning
horizon. Groff (1979) designed a lot sizing heuristic based on
marginal analysis. His heuristic accumulates the demands for
consecutive periods as long as the increase in marginal costs is
less than the marginal decrease in the setup costs.

All these single level algorithms do not appropriately solve
the realistic MRP system problem which necessarily entails
multi-level, multi-product situation. However, they are important
in that they solve a relatively simple single level problem and
may also be applied to the multi-level, multi-product problem.

When numerous items on a sinrgle level are subjected to a
certain ordering prodecure, the optimal or near—-optimal policy is
the sum of the optimal or near-optimal policies for the
individual items. However, as Krajewski and Ritzman assert,

multiple products introduce the complexities of resources
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constraints and non-trivial sequencing problems. Several
researchers have looked at the case where there is no dependent
demand but items are related in other ways. Doll and Whybark
(1973) addressed the single machine, multi-product lot scheduling
problem where there are several orders that need to be processed
on the same machine with limited capacity. They present an
iterative procedure for determining the production sequence and
lot sizes for the items, using a joint EOQ approach for
determining the number of production cycles for planning
horizon.

Newson (1975) outlines a heuristic that initially structures
the problem as a network of unlimited capacity. The heuristic is
extended to include variable capacity constraints. Other studies
dealing with single level lot sizing with capacity constraints
include Eisenhut (1975), Swoveland (1975), Zangwill (1966) .
Lambrecht and Vander Eecken (1978) allowed capacity to vary in
each period and derived an algorithm to determine dynamic lot
sizes by formulating the problem as a minimum cost network flow
problem. Silver (1979) presented a dynamic programming algorithm
for coordinated replenishment of items, when there is a major
setup cost incurred for a family of items and a minor one for
items within the family. Other research in this category include
Elmaghraby and Bawle (1972), and Simmons (1972).

For the current research, however, it will be assumed that
the setup cost for each item is constant and independent of the
processing sequence of open orders at a work center. It will

also be assumed that there is sufficient capacity to process any
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quantity of the items within the pre-specified lead time.

The comparative lot sizing studies ( e.g., Berry (1972),
Biggs (1975), Groff (1979), Kaiman (1969), Orlicky (1975), Silver
et al. (1973), Theisen (1974) ) generally confirm the relative
total inventory cost results achieved by each lot sizing rule.
For single level, single product problems under discrete,
deterministic demand and with fixed planning horizons, the W-W
rule will yield the lowest total cost solutions, followed closely
by §-M heuristic; LTC and PPB heuristics usually rank next,
followed by the POQ, EOQ, and L4L rules. The number of
calculations, and hence the computational efforts required for
the rules generally varies inversely with the quality of their
solutions. The W-W rule is the most complex, and is most time
consuming while the L4L rule is the simplest to implement.

Most MRP systems utilize one or more of those single level
rules to make lot sizing decisions for all the items under their
control. However, even Wagner-Whitin algorithm, the best among
the single level lot sizing rules, cannot guarantee the best
solution for the multi-level lot sizing problem and may not be
entirely suited for multi-level MRP settings. Since these rules
do not effectively take advantage of the additional information
available for the MRP system, we need to design a multi-level lot
sizing heuristic that accounts for two distinct characteristics,

namely vertical dependency and horizontal commonality.
2,2 Multi-Level Research

There has not been much work published in the area of




15

multi-level lot sizing rules for MRP systems. Several studies
have examined non-MRP based 1lot sizing in multi-stage,
multi-level systems. Those studies, however, failed to address
some of the key issues that characterize the lot sizing problem
in MRP systems. First, the assumptions made on the product
structure examined in those works do not address the typical
product structure, namely multi-end product, multi-component,
multi-level product structure, of the MRP system. One major issue
is that several studies, such as Clark and Scarf (1960), Crowston
and Wagner (1973), Love (1972), Schwarz and Schrage (1975), Taha
and Skeith (1970), and Zangwill (1966), assume a serial
production system, where each item ( except end product and raw
material ) has exactly one predecessor and one successor. The
solution procedures devised for the serial, multi-level 1lot
sizing problems are generally not viable in the non-serial
assembly structures. Another issue is that of computational
efficiency. Optimum-seeking procedures presented in several
works, such as Crowston and Wagner (1973), Crowston, Wagner and
Henshaw (1972), Kalymon (1972), Love (1972), Pinkus (1975), and
Zangwill (1966, 1969), simply require a huge amount of
computation time to obtain the optimal lot schedules. Thus it may
be impractical to use those optimizing procedures in real
settings.

Although these studies failed to directly address our
research problem, examining them may still be valid in that we
may gain some insights into our problem.

The simplest multi-echelon structure is a serial one. For
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the serial product structure, lot sizing problem with
uncapacitated stages, concave production and holding costs, and
time-varying demand, Zangwill (1969) represented this problem as
a single source network. He showed that the optimal solution is
contained in the set of extreme point solutions. An extreme point
solution is one in which the lot schedule includes the lots
consisting of an integral number of periods of demand. Using the
extreme point solution concept, he proposed a dynamic programming
procedure for deriving the optimal production schedule. Love
(1972) also considered the serial structure problem with discrete
demand and presented an alternative dynamic programming
algorithm. He provéd that in a serial system the lot sizes of
the component will be an integral multiple of its parent's lot
sizes. The amount of computation for both algorithms is bounded
by a polynomial in the number of stages and the number of time
periods. Lambrecht and Vander Eecken (1978) examined a
single~-item serial system with time-varying demand for which the
last stage has capacity constraints. They characterized the
optimal solution in terms of extreme network flows and proposed a
decomposition solution procedure in which the problem is divided
between the stage with capacity restrictions and the ones without
them. Their procedure is to enumerate all extreme solutions for
the last processing stage, which is capacitated, and utilize
Zangwill's algorithms for solving the other uncapacitated stages.
Other approaches in a serial system may be found in Taha and
Skeith (1970), and Gabbay (1979). Taha and Skeith also used the

integer multiplier concept for a serial system. They assumed a
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constant demand rate over an infinite horizon and allowed
backorders in the final stage, and delay between stages. Gabbay
used linear programming to solve the aggregate problem and then a
set of multi-stage problems over a short time horizon, assuming
monotone costs for the aggregate problem and separability for
disaggregation.

Some researchers considered an assembly type structure where
the production of an item requires several components to be
assembled in a hierarchical order and each component has at most
one successor . The serial structure is a special case of this
assembly network.

Crowston, Wagner, and Williams (1973) showed that for single
parent multi—-component systems, the lot sizes of the component
will be an integral multiple of its parent's lot sizes. They
give a dynamic programming algorithm for calculating optimal lot
sizes wvhen demand is continuous and constant over an infinite
horizon. For the same problem, Schwarz and Schrage (1975) first
determined an optimal branch and bound procedure and then showed
a "system myopic" policy in which lot sizes are determined by
integer multipliers that are obtained by considering the parent
and its component residing in two adjacent levels in the product
structure at a time. Once the lot size for an item is calculated,
it will be fixed.

For an uncapacitated assembly system with time-varying,
discrete demand over a finite planning horizon, concave
production costs, and linear inventory holdling costs, Crowston

and Wagner (1973) formulated the lot sizing problem as a dynamic
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program by utilizing an extreme point characterization of the
optimal solution. Their optimal algorithm is quite complex, with
the solution time increasing linearly with the number of items
but increasing exponentially with the number of periods in the
scheduling horizon. For the more general assembly system, namely
multi-parent, multi-component structure like in a typical MRP
system, Steinberg and Napier (1980) produced an optimal procedure
for the problem by modeling the system as a constrained
generalized network with fixed charge arcs and constraints.
Other optimizing models addressing the problem may be found in
Haeling von Lanzenhauer (1970) and Kalymon (1972). Haeling von
Lanzenhauer modeled the multi-parent multi-component lot sizing
problem as a 0-1 integer programming problem. Kalymon used
decomposition techniques to solve the multi-level lot sizing
problem. In all of these optimum seeking algorithm cases for
serial and a non-serial assembly systems, the computational
inefficiency of obtaining optimal solutions on a recurring basis
have prohibited their application in most MRP settings.

In order to reduce the immense computational efforts required
with optimizing models, several researchers have taken a
heuristic approach to this problem, lot sizing for a serial or
assembly system. Their approach to this problem is mostly a
sequential application of a single stage lot-sizing method with a
set of modified costs that attempt to account for the dependence
relationship between neighboring stages. New (1974) proposed a
procedure which specifically acknowledges the dependency

relationship. For the constant demand case, he uses the concept
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of "value added" at each stage in the system to calculate an
adjustment factor to be used in the EOQ calculations. Once the
order quantity is determined, it wll not change. Based on this
modified EOQ calculation, McLaren (1977), and McLaren and Whybark
(1976) developed setup cost adjustment mechanism to account for
the interdependencies among levels. Their upward adjustment of
the setup cost is calculated by looking at each item and its
immediate component items as a small system nested in an entire
product structure. It 1s similar to Schwarz and Schrage (1975)'s
methodology with respect to considering two adjacent levels as a
separate system. This set of adjusted setup costs for each item
in the system can be used with any single level lot sizing rules.
They also presented both the Order Moment heuristic, which is a
single level lot sizing rule, and the Wagner-Whitin model- based
multi-level algorithm which does not guarrantee optimality. They
conceived their adjustment mechanism from examining the lot
sizing patterns of an end item. The product structures examined
in their study are ones in which every item in the system has at
most one parent. However, their technique can be used without any
modification for the multi-parent situation. Blackburn and
Millen (1982) propose several ways of modifying both the setup
cost and carrying cost to take into account the dependency
relationship between two neighboring 1levels. Their cost
modifications are based on the assumptions of an infinite horizon
and continuous, constant demand per period. They further assume
that the 1ot size for an item is an integer multiple of the lot

size for its parent, which is not valid for the product structure
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with items having multiple parents. The setup and carrying cost
are modified for each item by considering the item and all lower
level items below it. This modification scheme, however, cannot
be adapted for application to multi-parent, multi-component
systems, as its basic assumption of the lot size for an item
being an integral multiple of the lot for its parent is not valid
in multi-parent, multi-component structures.

The other approach to the multi-1level lot sizing problem
offered in the previous 1literature is to directly apply single
level 1lot =sizing heuristics ( for example, Economic Order
Quantity, Least Total Cost as in Gorham (1968), Periodic Order
Quantity as in Orlicky (1975) etc. ) to every item in the system
sequentially and compare total inventory cost performances of the
rules. Collier (1978) chooses five lot sizing methods for use in
his comparative study: EOQ, P0Q, LTC, L4L, W-W. He classifies the
product structure into three general levels: (1) the "top" level
consisting of end items whose demand must be forecast; (2) the
"intermediate" level consisting of all the manufactured parts,
subassemblies, and assemblies; and (3) the "lower" level
consisting of raw materials procured from outside. He then
evaluates twenty-five combinations of the 1lot sizing rules
applied at the two upper levels for different degrees of end item
demand variability and item commonalaity. Performance was compared
in terms of inventory cost and computational effectiveness. Yelle
(1979) uses four rules: EOQ, POQ, LTC, LiL, for a single parent,
single component structure. He then compared sixteen combinations

of these techniques over the two 1levels under six different
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demand patterns for the end item. Choi, Malstrom, Classen (1984)
evaluates nine lot sizing rules, including LFL, EOQ, POQ, LTC,
LuUC, PPB, S-M, W-W, EEH( EOQ/EPQ hybrid algorithm), for a one-end
item, 20-component, 3-level product structure. The performance of
each lot sizing rule is simulated over nine different sets of
market requirements patterns over a twelve time period.

Other comparative studies include Biggs, Goodman, and

Bardy (1977), Biggs (1979), and Jacobs and Khumawala (1980).
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Chapter 3

Mathematical Model and Heuristics Development
for Single Level Environment

The recent growth in the use of material requirements
planning ( MRP ) systems has resulted in increased interest in
the topic of lot sizing strategies to be used for every item
under the control of MRP system. Management has complete control
over what lot size model to choose for each product item or
product structure. Most of current MRP users are adopting single
level lot sizing techniques. We first present a mathematical

model for the single level, single product problem.
3.1 Mathematical model

Our problem is to find a set of values of lot sizes that
optimizes our performance criteria, total inventory cost, which
consists of the setup cost and carrying cost, for an item for all
time periods in the planning horizon. It is constrained to meet
demands at least. A mixed integer programming model is formulated
for the problem. In the t-th period, t=1, 2,..., T, we let

Xt = order quantity for the item for period t

Z ( X. ) = zero-one variable for setup

S = setup cost for the item

C = carrying cost for the item / unit / period

I, = ending inventory of the item at the end of period t
Dt = demand for the item for period t

L = lead time for the item
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We may write our objective function for planning horizon of T

periods as

T
Minimize (s * 2 (Xt) + C * It ) (3.1)
t=1
subject to
1 if xt >0
Xe =M *z2 (x.) <0 (3.4)
It >0 for all t (3.5)
X, >0 for all t (3.6)

Since the early work of Harris (1915), numerous articles
and papers have been written in the past few years on the subject
of lot sizing heuristics and their cost performance in single
stage or multi-stage situation. The <c¢lassic Economic Order
Quantity ( EOQ ) model was developed for determining the optimal
order quantities when demand is continuous and the steady-state
demand rate is known. Wagner—-Whitin (1958) developed a dynamic
version of the economic lot size model which drops the assumption
of a steady-state demand rate and invariable inventory cost from
period to period, and considers discrete, deterministic demands
but with time-varying demand rate. It is an optimum-seeking
algorithm for the single level single product problem.

Presumed computational difficulties with Wagner-Whitin's

model have led to a number of heuristic approaches. Those
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approaches include Least Total Cost ( LTC ) ( Gorham, 1968 ),
Part Period Balancing ( DeMatteis and Mendosa, 1968 ), Silver and
Meal (1973), Groff (1979), Lot for Lot ( LFL ) and Periodic Ordetr
Quantity ( POQ ). Currently, MRP users are using single stage
lot size models such as LFL, EOQ, POQ, LTC within the MRP system
( American Production and Inventory Control Society (1974),
Berry (1972), Biggs et al. (1977) ).

The purpose of this chapter is to develop and test
modifications to existing single stage lot sizing heuristics
which produce enhanced cost performance for a single stage
situation. 1n the next section, we present new modified versions
of the widely used 1lot sizing rules of EOQ, POQ, and LTC,
together with a numerical illustration of their application. This
is followed by a cost comparison of the modified heuristics with
their original version and W-W approach in the problem set of

numerical examples presented in the paper of Berry (1972).
3.2 Lot Sizing Techniques and their Modifications
Economic Order Quantity ( EOQ ) vs. Modified EOQ ( MEOQ )

EOQ model determines the optimal order quantity when demand
is continuous, constant, and known, and where total inventory
costs are used as the optimality criterion.

The EOQ lot sizing rule is to always order the economic order

quantity ( Q* ) calculated from :

o = il 8 (3.7)
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where D = Average demand / period
S = Setup cost
C = Carrying cost / unit / period

When the on-hand inventory at a period is less than demand
for the next period, an order of Q* units is placed. If an order
of Q* is not sufficient for meeting the demand <£for the period,
the order is increased to the level of the gross requirement to
prevent shortages.,

It should be noted that as the total inventory cost formula
assumes continuous, level demand, it is only an approximation to
the total cost function for the case of discrete, time-—varying
demand. Furthermore, with the EOQ model, we cannot guarantee that
inventory carryover will not occur. In most of the periods within
the planning horizon, an excess inventory 1is carried into a
period in which a new replenishment order is scheduled to arrive.
Carrying costs are incurred for the units carried into that
period. This unnecessary waste results from the static model
ignoring actual time-varying demand pattern.

It is sufficient to consider rules in which inventory should
never be carried in a period in vwhich an order is scheduled to
arrive. As all dynamic lot sizing rules do , an EOQ model for
discrete demand environment needs to place an order covering an
integral number of periods of demand. The modification to the
original EOQ checks to see how many periods of demand should be
included in each lot. Thus it is named Modified Economic Order
Quantity ( MEOQ ).

When an order is to be placed ( i.e., when on-hand inventory
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reaches zero and current demand is positive ), MEOQ determines

each lot size according to the following algorithm :

Step 1.

Step 2.

Accumulate demand period by period and check
whether the cumulative demand equals or exceeds the
EOQ ( obtained from eqg. (3.7) ) for the first time.
Suppose the test 1is being done in period K.
K
Is X D > E0Q?
t=R
where R is the period in which a replenishment

order is to be placed.

K
If Yes and it equals EOQ, then order 2
t=R

t

If Yes and it exceeds EOQ, go to step 2.

If No, go to step 3.

Compute part period of period K and compare this
with EPPL,

Is(K—R)DK > EPP

K-1
If Yes, order J Dt and go to step 1.
t=R
K
If No, order Z D, and go to step 1.
t=R

— g (ot Gt S S B0 S G s G G et G G G (Rt e Glets Ve G G W et e e G (et G T S (N M G S Y S S R G W GG Gt S U M0 GBS GSe E

If the number of units of demand carried in inventory is

multiplied by the number of periods carried, the result is called
part period for the demand. EPP, the quantity of the inventory

item which,

if carried in inventory for one period, would result

in a carrying cost equal to the setup cost, is computed by :

EPP = —==w- (3.8)

where S setup cost

carrying cost / unit / period

(@]
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Step 3. Compute part period of period K and compare this with
EPP.
Is ( K-R) Dk > EPP ?

K-1
If Yes, order 2. D
t=R

t
If No, move to next period by setting K = K + 1 and
go to step 1.
Numerical Example.
Without loss of generality, we assume that shipments are
received in the same period as the orders i.e., lead time
is zero.
Setup cost = $§ 206
Carrying cost / unit / period = $ 2

EQCQ 138 units

EPP 103 units

When EOQ is applied,

- Gt S s s s e S G U G Sk By W G G G f Yot (et G (DU W a0 S S B e Bt G S P S S S SR G e . S S G G S e T G (Y e et G o Gt G o0t W v S

DEM 80 100 125 100 50 50 100 125 125 100 50 100
INV 58 96 109 9 97 47 85 98 111 11 99 137
ORD 138 138 138 0 138 O 138 138 138 0 138 138

- . e G e S S S G s B G W b ot Gt e G st (S0 et RS 68 TS GBS e Gee e W et G GAY GED SN G G G SN TEN D G G D R e G G G S i I S SN G GO S S W B

Carrying cost : § 1914
Setup cost : 1854

Total cost

..
w
~
[,
o«

When MEOQ is applied,

DEM 80 100 125 100 50 50 100 125 125 100 50 100
INV 100 60 100 0 50 0 125 0 100 0 100 0




Step

Step

Step

Step

Step

Step

Step

1.

Carrying cost : $§ 900
Setup cost : 1442

Total cost : 2342

R=1ad K=1

Is D1 (=80) > EOQ (=138) ?

No.

Go to step 3.

Is (1-1) Dy (=80) > EPP (=103) 2
No.

K= 2 and go to step 1

Is Dy (=80) + D, (=100) > EOQ (=138)
Yes, it exceeds.

Go to step 2.

Is { 2-1)D, (=100) > EPP (=103)
No.

Order D1 + D,
R= 3and K =3

Is D3 (=125) > EOQ (=138) ?

No.

Go to step 3.

Is (3-3) D3 (=125) > EPP (=103)
No.

K= 4 and go to step 1.

R= 3 and K = 4.

Is Dy (=125) + D, (=100) > EOQ (=138) ?

Yes, it exceeds.

Go to step 2.

180 in period R (=1) .

?

28
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Step 2. Is (4 - 3 ) D4 (=100) > EPP (=103) ?
No.
Order Dy + D, = 225 in period R (=3).
Continuing in this fashion, we will have MEOQ order schedule.
It can be seen that EOQ results in a total cost which is 76% over

MEOQ.
Periodic Order Quantity ( POQ ) and Modified POQ ( MPOQ )

Another popular modification to the EOQ rule for use in an
environment of discrete demand, termed Periodic Order Quantity,
is obtained by converting the units given by ECQ to an equivalent
number of periods of average demand.

The POQ algorithm first calculates the EOQ. Then this order
quantity is divided by average demand per period and rounded off
to the nearest integer value, N to determine ordering interval.
An order is placed with lot size equal to N* periods of positive
demand. Since this method prevents inventory carryover, it is
more effective than the EOQ in obtaining schedules with lower
inventory carrying costs. However, like the EOQ model from which
it is derived, it may be penalized for placing N periods of
demand automatically without considering the actual demand
pattern.

Thus a modification to the POQ algorithm checks to see
whether there can be any possible improvement by moving original
order points set by POQ rule either backward or forward depending
on the actual time-varying demand pattern. The Modified Periodic

Order Quantity ( MPOQ ) algorithm first computes economic
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ordering interval, N* as POQ does. Further steps in the algorithm
are :
Step 1. Accumulate demand period by period spanning over N*
periods from an order point period R up to period K
(=R+N -1).
Step 2. Compute the part period for period K and compare this
with EPP.
Is ( K -R) Dt > EPP?
K-1

If Yes, ordexr L D
t=R

t
go to step 1.
If No, go to step 3.
K
Step 3. Is Dt > EOQ ?
t=R

R
If Yes, order Z D
t=R

t
go to step 1.
If No, move to next period by setting K =K + 1 and
go to step 2.
Numerical Example.
Without loss of genarality, we assume that shipments are
received in the same period as the orders, i.e., lead
time is zero.
Setup cost = § 200
Carrying cost = § 2
EOQ = 110 units
Ordering Interval (N*) = 2 periods

EPP = 100 units
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When POQ is applied,

DEM 30 100 40 110 O 50 100 20 80 40 110 40
INV 100 0 110 0 06 100 0 80 0 110 0 0

" —_—_— — (o S - ——— T — - T " G W S B Bt Gt S S St (i o P A G T G e T RS A Gt St ot W o — — — ———

Carrying cost : $ 1000

Setup cost : 1200

Total cost : 2200
When MPOQ is applied,

. g e S i G Gt e Pt S s e e e o6 Y A P M ) (p G P Gt P S GG P (e s S P TS S G G A P A GRS P S (e P (R A e i nd G (S e S e M

DEM 30 100 40 110 O 50 100 260 80 40 110 40
INV 0 40 0 0 O 0 20 0 40 0 40 0
CRD 30 140 110 50 120 120 150

- —— T G G . S 0 B P G e . . e G G G G . S e S S (L W (A S e A d M (en B S S e B Bt B0 G et e R e e S e e G WY e S O

Carrying cost : § 280

Setup cost 1400

Total cost 1680

Stepl. As N = 2 and R= 1, K = 2.

Step 2. Is (2 - 1) D, (=100) > EPP (=100) ?
Yes.
Order Dl (=30) in period R (-=l1).

Step 1. As N* = 2 and 0 = 2, K = 3.

Step 2. Is (3 - 2 ) D, (=40) > EPP (=100) ?
No.
Go to step 3.

Step 3. Is D, (=100) + D5 (=40) > EOQ (=110) ?
Yes.

Order D2 + D3 (=140) in period R (=2).
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Continuing computation in this fashion, it is shown that basic

POQ results in a total cost which is 31% over MPOQ.
Least Total Cost ( LTC ) and Modified LTC ( MLTC )

LTC determines lot sizes so that the carrying cost incurred
for each lot is about equal to the setup cost. This rule first
computes economic part period ( EPP ). The algorithm accumulates
consecutive periods' demands until the cumulative part-periods
exceeds the EPP. Suppose the cumulative part-periods exceed the
EPP at the N th period. With this algorithm, an order is placed
for the next N or N - 1 periods in period R, the order point,
depending on whether either the cumulative part-periods up to
period R + N or the ones up to R + N -1 is closer to EPP.

LTC is an extension of the EOQ model for discrete demand
environment in that it intends to minimize total inventory costs
over the planning horizon by equalizing order costs and carrying
costs. However, it also can be penalized for ignoring the given
demand pattern. Experience with the basic LTC heuristic has
indicated that its use can lead to non-trivial cost penalties if
it handles demand pattern with some sporadic rapid seasonal
increases over the planning horizon.

When, among the periods included in one lot, ending period's
part period happen to exceed the EPP for the item, maintaining
the period in the lot would incur carrying cost bigger than setup
cost. Thus if the last period, whose part period is greater than
EPP, is eliminated from the lot, carrying costs for the demand

would be saved, while incurring smaller setup cost.




Our modified LTC algorithm is as follows,
Step 1. For each time period T,
calculate part period DT (T-R ), where R is the
period in which a replenishment order is placed.
IsDT( T -R) > EPP ?
If No, go to step 2.
If Yes, for the first time in period N,
N-1
then order Dy
t=R
Step 2. Accumulate part period and check whether the
cumulative part periocd exceeds the EPP,
Isg Dt(t—R)>EPP?
t=R
If No, set T=T + 1 and go to step 1.
If Yes, for the first time in period N,
N-1

EPP - Z. D, ( £t -R)
t=R

set A

I

N
B =X Dt(t-R)—EPP
t=R

N-1

If A < B, then order X D,
t=R
N

A > B, order Z Dy
t=R

In this algorithm, Step 2 is the basic LTC algorithm while
Step 1 is the modification.

33
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Numerical example.
Without loss of generality, we assume that shipments are
received in the same period as the orders, i.e., lead time
is zero.
Setup cost = § 200
Carrying cost/ unit / period = § 2
EPP = 100 units

When LTC is applied,

At B - et Gt ot ettt e T e e Bk . S e S o S B S S e S B Mt e i Y St e S M o M (ot Mt . e Yo o Gt St et et ks i e o S ke e Y i g G fa

DEM 20 30 80 0 50 10 S0 40 0 70 60 100
INV 110 80 0 0 100 90 60 70 70 0 100 0

Setup cost : $ 800
Carrying cost : 1240
Total cost : 2040

When MLTC is applied,

S Gt G B S g P G G S - G G (G — G —— . (= (. (Y G S P QD Gumt D G g G S (R G G S W D G Gt S (s S S et P G

Setup cost : $ 1200
Carrying cost : 280
Total cost : 1480

1l
=

Step 1. R
T=1
D; (=20) (1 -1)
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Is Dy (=20) (1 - 1) > EPP (=100) ?
No.
Go to step 2.
Step 2. Is D; (1 - 1) > EPP (=100) ?
No.
Set T = 2 and go to step 1.
Step 1. T = 2
D, (=30) (2-1)
Is D, (=30) (2 -1 ) > EPP (=100) ?
No.
Go to step 2.
Step 2. Is Dqy(=20) (1 -1 ) +D,(=30) (2 - 1) > EPP (=100) ?
No.
Set T =3 and go to step 1.
Step 1. T = 3
Dy (=80) (3-1)
Dy (=80) ( 3 - 1) > EPP (=100) ?
Yes, for the first time N = 3.
Order Dl + D, (=50) in period R (=1).
Continuing computation in the same way, it is shown that basic

LTC results in a total cost which is 31% over MLTC.
3.3 Experimental Investigation

In order to compare the cost performances of the three
modified heuristics with their original version and with the
optimal Wagner—-Whitin algorithm, we wuse the experimental

framework presented in Berry's (1972) article. UDerry has
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suggested a general experimental framework within which to
compare systematically the various 1lot sizing procedures that
have been proposed. This problem set has been used by Silwver and
Meal (1973) and Groff (1979).

There are 25 sample problems which are made from a
combination of five different demand patterns ( see Table 3.1)
and five different time between order ( TBO ) wvalues (see Table
3.2). TBO is defined as the expected coverage duration of a lot

( EOQ ) and calculated as follows,

E0Q 28
TBO = ———mm——mmm SO - (3.9)
D DC

Table 3.1

DEMAND PATTERNS FOR INVESTIGA'TION

Period 1 2 3 4 5
1l 92 80 10 10 0

2 92 100 80 10 0

3 92 125 180 15 0

4 92 100 80 20 0

5 92 50 0 70 0

6 92 50 0 180 1105

7 92 100 180 250 0

8 92 125 150 270 0

9 92 125 10 230 0

10 92 100 100 40 0

11 92 50 180 0 0

12 93 100 95 10 0
Sum 1105 1105 1105 1105 1105
Coefficient 0 .293 .718 1.410 3.310

of Variation
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Table 3.2
INVENTORY COST PARAMETERS

TBO EOQ S C EPP
0.73 66 $ 48 § 2 24
1.00 92 92 2 46
1.14 105 120 2 60
1.50 138 206 2 103
1.80 166 300 2 150

The percentage increases in total inventory costs over the
optimal Wagner-Whitin method is presented in Table 3.3. The three
improved heuristics outperform their basic counterparts. They
also compare very favorably with the optimal Wagner-Whitin
solution.

Their average percentage increases are reduced rather
dramatically from their corresponding heuristics' performance,as
seen in Table 3.4. For the case of MEOQ, it reduced from 44.54%
to 0.78%, for MPOQ, from 7.61% to 1.41%, and for MLTC, from 6.42%
to 0.53%. Table 3.5 presents the number of occasions in which
the modified algorithms outperform their predecessors. For the
case of MEOQ, it outperformed EOQ in 18 cases, and tied in 7.
MPOQ surpassed POQ in 12 occasions and tied in 13 while MLTC
outperformed LTC in 13 cases and tied in 12. On no occasion did
the basic algorithms outperform their modified versions. All
the ties are the same as the optimal in the Wagner-Whitin

solution.
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When excluding the cases of tie in which both modified and
original heuristics provide optimal solutions, the reduction is
more remarkable. With the MEOQ model, it is reduced from 61.86%
to 1.09%, with the MPOQ, from 15.85% to 2.94%, and with the MLTC,
from 12.35% to 1.02%. ( see Table 3.6 ) Average reduction rate is
98%, 8l%, and %2% respectively. The three modified rules provide
the same solution as the optimal one in more than 84% of the

sample problems, as seen in Table 3.7.
3.4 Conclusion

We generated modified versions of three 1lot sizing
rules, namely EOQ, POQ and LTC, which are popularly used in
current MRP settings. The common problem with EOQ and POQ is
that they have rigid policies which have been instituted on the
basis of average demand patterns. The modifications suggested
improve the basic rules by looking at the demand varitions from
period to period through Economic Part Period ( EPP )
computations. The LTC rule, while looking at EPP, heuristically
decides on whether to choose the last period to be in the lot
size. Our modification seems to enhance this rule by avoiding
inclusion of periods whose part periods are larger than EPP in
the lot size.

Each modified heuristic dominates its predecessor in a cost
comparison in our experimental setup. Average cost reduction
rates from their predecessors' are very high ranging from 81% to
98%. The chances that they provide optimal solutions are also

very high ranging from 84% to 88%. An average cost penalty of



Table 3.3

PERCENTAGE INCREASES ( OVER W~W METHOD IN TOTAL
COSTS OF SETUP AND CARRYING INVENTORY ).

Coefficient of Variation ( Cy )

TBO RULE 0 .293 .718 1.410 3.310
EOQ 0.0 22.22 48.67 59.92 0.0
MEOQ 0.0 0.0 0.0 0.0 0.0
0.73 POQ 0.0 0.0 6.19 9.09 0.0
MPOQ 0.0 0.0 0.0 0.0 0.0
LTC 0.0 0.0 0.0 8.26 0.0
MLTC 0.0 0.0 0.0 0.0 0.0
EOQ 0.0 63.95 76 .42 85.41 0.0
MEOQ 0.0 0.0 0.0 3.35 0.0
1.00 POQ 0.0 0.0 8.49 21.05 0.0
MPOQ 0.0 0.0 0.0 7.17 0.0
LTC 0.0 1.45 16.03 12.92 0.0
MLTC 0.0 0.0 0.0 7.17 0.0
EOQ 74.03 41.43 97 .27 92.31 0.0
MEOQ 0.0 0.0 0.0 1.92 0.0
1.14 POQ 0.0 2.86 9.09 26.92 0.0
MPOQ 0.0 0.0 0.0 7.69 0.0
LTC 26.81 24.29 13.64 3.85 0.0
MLTC 0.0 0.0 0.0 1.92 0.0
EOQ 38.00 67.62 49.60 70.94 0.0
MEOQ 0.0 4.18 10.19 0.0 0.0
1.50 POQ 0.0 6.14 15.51 44.42 0.0
MPOQ 0.0 0.0 0.0 9.26 0.0
LTC 0.0 6.14 15.51 9.77 0.0
MLTC 0.0 4.18 0.0 0.0 0.0
EOQ 38.13 46.78 65.06 75.70 0.0
MEOQ 0.0 0.0 0.0 0.0 0.0
1.82 POQ 0.0 0.0 7.73 32.71 0.0
MPOQ 0.0 0.0 0.0 11.21 0.0
LTC 0.0 0.0 7.73 14.01 0.0
MLTC 0.0 0.0 0.0 0.0 0.0
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AVERAGE PERCENTAGE INCREASES OVER W-W

ORIGINAL IMPROVED
EOQ 44.54% MEOQ 0.78%
POQ 7.61 MPOQ l.41
LTC 6.42 ML TC 0.53

Table 3.5

MEOQ vs.
MPOQ vs.
MLTC vs.

MODIFIED VS. ORIGINAL

WIN LOSE
EOQ 18 0
POQ 12 0
LTC 13 0

12

* All the ties are the same as the optimal W-W solution.

Table 3.6

AVERAGE PERCENTAGE INCREASES OVER W-W METHOD
WHEN THE CASES OF TIE ARE EXCLUDED

Original Improved
EOQ 61.86% MEOQ 1.09%
POQ 15.85 MPOQ 2.94
LTC 12.35 MLTC 1.02
Table 3.7
FREQUENCIES THAT EACH RULE PROVIDES THE SAME OPTIMAL

SOLUTION AS THE W-W

MEOQ 21 out of 25 ( 84% )
MPOQ : 21 out of 25 ( 84% )
MLTC = 22 out of 25 ( 88% )
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0.53%, 0.78%, and 1.41l%, respectively, over the optimal solution
is an extremely encouraging result. Considering the high cost of
computation, these modified heuristics seem worthy of extensive
usage 1in practice. They can be applied sequentially to the
items ain the multi-level product structures to solve multi-level
lot sizing problems and will be used together with our proposed
multi-level heuristic to examine their performance in multi-level

setting.
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Chapter 4

Mathematical Model and Heuristic Generation
for Multi-Level Environment

Chapter 1 presented a description of the problem of 1lot
sizing for multi-level product structures such as in MRP systems,
and Chapter 2 reviewed the literature related to the problem. The
main purpose of this chapter is: (1) the development of a simple
multi-level lot sizing algorithm; and (2) the design of
experiments to test the proposed algorithm.

In the first section, the mathematical model is formulated
and introduced to indicate the necessity for the development of
simple heuristics. This is followed by sections on the
development of the proposed heuristic and on a preliminary
experimental investigation to find how it performs. The last
section includes the research methodlogy and the specific

hypotheses to be tested in the formal experiments.

4.1 Mathematical Model

Our problem is to find a set of values for lot sizes that
optimizes our performance criteria, which is total inventory
cost, consisting of the setup cost and carrying cost, for all
items in the system and for all time periods in the planning
horizon. It is constrained to at least meet demands.

A mixed integer programming model is formulated for the

problem. In the t-th period, t=1, 2,...,T, we let
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number of items in the system

number of time periods in the planning horizon

X 13 =2
1

jt = order quantity for item i for period t

Z ( X,, ) = zero-one variable for setup

i = setup cost for item i

Q W
it

i = carrying cost for item i / unit / period

t = ending inventory of item i at the end of period t

I
Li = lead time for item i
UiJ

usage factor ( i.e., quantity of item i needed for
producing one unit of item j ) which can be found
from the bill of materials information

D independent demand for item i in period t

it
P( i ) = set of the immediate parents of item i

We may write our objective function for N items and for planning

horizon of T periods as

N T

Minimize o1 eel ( Si 7 (xit) + Cy T4y ) (4.1)
subject to

Tip = Io0 ¢ + Xoo - U.. X.. - D, (4.2)

it it-1 i(t-L ) j P(i) ij 7t it
1 if xit >0
where M is a large number greater than max. ( Dit )
t=1
Iit >0 for all i, t (4.5)

X;p > 0 for all i, t (4.6)




44

The objective is to minimize the total inventory cost, which
consists of the setup cost and carrying cost as represented by
two terms in the objective function (4.1l). A setup cost is
incurred whenever an order is placed and is independent of the
size of order. Inventory carrying costs are directly proportional
to the ending inventory in each period. No production cost term
is included for it is not a function of lot size.

First constraint (4.2) describes how inventory level changes
each period for each item. In (4.2), for an item i, the beginning
inventory plus current production less current demand equals the
ending inventory. Current production consists of xi(t-—L yr the
order quantity whose order was placed Li ( lead time for item i )
periods prior to t and was planned to be added to the inventory
for the period t. On the other hand, usage includes the demand
for the item to satisfy the order release from immediate parents
and independent demand for item i as service parts. For the end
items in particular, the relation (4.2) can be stated as follows,

Di, = Ii,e-1 +Xi, e = Ij,¢
where i represents end items only.

The demands for the end items, Di,t' are obtained directly
from the known master production schedule and can be treated as
constants.

Relation (4.4) forces the 0-1 variable, Z ( xit ), to be 1
whenever an order is placed. iZ{ X,. ) will ordinarily have value

0 due to its positive coefficient in the objective function,

which is to be minimized. When xit is positive, however, relation
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(4.4) is violated unless Z( X., )is set to value 1. Since the
largest possible value for Xit arises when a single order placed
in the first period satisfies the entire T periods of demand
included in the planning horizon, the number M must be at least
as large as the total sum of demand over T periods regardless of
item, so that relations (4.3) and (4.4) are not violated.

The non-negativity relations (4.5) and (4.6) are used to
ensure that all demand is to be met while maintaining a feasible
production schedule. And there will be no stockouts and backlogs.
This is consistent with current MRP systems.

The problem represented by relations (4.1) -~ (4.6) can be
solved using mixed integer programming. The size of the problem
depends on both the number of items (N) in a system and the
number of periods (T) in the planning horizon. The problem has
N*T binary integer variables ( Z( Xit ) ), 2*N*T continuous
variables ( X ¢ and I ) . Assuming that the lot sizes and
inventories will be large enough to be approximated by rounding
off their real number values to obtain integer values, there
still are N*T integer variables. This makes integer programming
computationally infeasible for calculating optimal lot sizes for
a practical situation, where N is in the thousands, and T is
typically 52 weeks or more.

Solution time for mixed integer programing problem tends to
be very high. Our previous computational experience with the MIP
supports this observation. A set of problems whose N is 6 and T
is 6 was solved by using MIP. Since obtaining the optimal

solution of an MIP problem about the same size as our problems
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would require unexpectedly huge computing time and costs, we had
to stop at some int;armediate stage of computation, that is, the
third integer solution as in our preliminary investigation.
Computing time needed to obtain the third integer solution of MIP
with APEX III package on CDC CYBER ranged from 4.9 to 105 CPU
seconds of execution time ( average time 33.88 CPU seconds of

execution time per problem ).
4.2 The Proposed Heuristic

The direction taken in our study is toward the development of
simple rules that yield near optimal lot sizes, with regard to
inventory costs, and yet are computationally practical for MRP
systems. Heuristic lot sizing rules may be well suited for use in
MRP systems in that they may offer a great possibility of
computational efficiency without great sacrifice of solution
quality.

Several papers have pursued this direction in previous
research. The most popular approach to the multi-level lot
sizing problem is a sequential application of a single stage lot
sizing rule with a set of modified costs that attempt to account
for the dependence relationship between neighboring stages. New
(1974) has presented a procedure which specifically acknowledges
the dependency relationship. For the constant demand case, he
uses the notion of "value added" at each stage in the system to
calculate an adjustment factor to be used in the EOQ
calculations.

McLaren (1977), and McLaren and Whybark (1976) developed
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setup cost adjustment mechanism to account for the interdepend-
encies among levels. The setup cost adjustment mechanism
allocates a proportion of all immediate components' setup cost to
the production of the parent part. The proportionality constants
are ratios of the time between orders (TBOs). Then the weighted
setup cost is the sum of the parent setup cost plus the allocated

portions of its immediate components setup costs. It can be shown

as
TBO
S;' =5+ X ( —mm-—m= S. ) (4.7)
j £ B(i) TBO, J

2 S,
where TBO. = [=————deu (4.8)

J D. C

i~

B(i) is the set of immediate components of i

These adjusted setup costs are used with single level lot
sizing technigues. As the adjustment mechanism was developed for
the multi-component single parent type of product structure,
problems arise when it is applied to an item that has multiple
parents as in a typical product structure in the MRP system.

Consider a case in which an item k has two parents, items i
and j. Suppose an average demand for parent j, Dj' increases,
other things being equal. It causes the average demand for its
child k, Dk' to increase and the time between orders for the

item, TBOk, to shrink.

We note from equation (4.7) that the adjusted setup
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cost for parent i, S;', in turn, increases as TBO, decreases. The
inflated S;' tends to increase the calculated lot size for the
parent i, even though nothing has happened to the item itself.
When the planned orders for one or more of the other parents of
item k are changed, S§,;' would change causing lot sizes for the
parent i, even when no changes have occurred to parent i.
Consider a case in which item i is the only parent in the

system with multiple components ( e.g. k,1,m,...,etc. ) just like
the situation for which the setup cost adjustment mechanism has
been developed. Suppose EPP ratios for the items in the system

are all equal or even close to each other.

where B(i) 1s set of ( k, 1, m, ...etc. ).

In this case, as D, = D = Dy =Dp = ... etc., from the single
parent explosion into multiple components, the ratios between the
TBOs of parent i and one component item are equal to or closer to
1. This fact causes the adjusted setup cost for parent i, 5;', to
be the sum of all the components' setup cost and its own. S;' is
most 1likely inflated so that only a single or a few number of
large order(s) may be planned without checking whether this
order plan is economical systemwise at all.

These problems with McLaren-Whybark's setup cost adjustment
mechanism result frem the way it was developed. It was

originally generatec from product structures in which every
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item in the system has only one parent at most. Further, the
adjustment mechanism was devised having examined the lot sizing
patterns of an end item only. They have not checked their
adjustment mechanism with the lot sizing patterns of component
items. Thus, these problems imply that this technique is
inappropriate for multi-parent, multi-component product
structures which are usual in real MRP settings.

Blackburn and Millen (1982) proposed the modification based
on the assumptions of an infinite horizon and constant demand per
period. They further assumed that the lot size for an item is an
integer multiple of the lot size for its parent, which is not
valid for the product structure with common items having multiple
parents.

Instead of adjusting cost parameters involved in the problem,
our proposed study explores ways to revise current schedules
obtained from applying lot sizing rules to the systemn.

A common practice in the production of complex, assembled
products is to subdivide the final products into assemblies,
subassemblies, parts, and raw materials, maintaining parent-child
relationship between adjacent two levels. These assemblies and
subassemblies are produced on separate production orders
determined by an MRP system.

To facilitate our understanding of the proposed heuristic's

development, consider the following sample problem.
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Numerical Example

Product Structure

—
——

Cost Structure

e 4 = Wt e e e S S ot S T T G S Gt o e s e S it G S R Pt iy Gt SO S e e T S e

e G G S ot St G G Gt et e e G B B S S B il e S D M ot G A e . G S e e Gt S it Skt oy St St g

Demand Pattern

period
item 1 2 3 4 5 6
1 50 30 60 40 0 80
2 20 70 10 90 40 30

o — . e (1 o G T W 3 — —— — T = Y Wme S Y e S T (Y — g R S G (. T B

Giwven these input data, we can develop a set of MRP schedules
applying a single level lot sizing rule sequentially to all the
items residing in the system.

When our Modififed Economic Order Quantity model is chosen as
a rule for the sequential application to the items in the system,

the MRP schedules for the system would look as given below.




period 1 2 3 4 5 6
GR 50 30 60 40 0 80
OHI 30
POR 80 60 40 80
ITEM 2
GR 20 70 10 90 40 30
OHI 10 30
POR 20 80 90 70
ITEM 3
GR 100 80 60 130 70 80
OHI 80 70
POR 180 60 200 80
ITEM 4
GR 80 60 40 80
OHI 40
POR 80 100 80
ITEM 5
GR 20 80 90 70
OHI 80 70
POR 100 160
Legend:
GR : Gross requirements Carrying Cost = § 515
OHI: On hand inventory Setup Cost = 1700

POR: Planned order release Total Cost 2215
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Examine the schedule for item 3 for a moment. In period 1, a
planned order of 180 units of item is .eleaseu and is scheduled
to arrive in the same period ( as we assume that lead time is
zero). Out of these 180 units, 100 units are assembled together
with item 4 and 5 into item 1 and 2 respectively, and 80 units
are stored for later use in assemblying item 2 in period 2. The
gross requirement of 180 units for item 3 is a combination of
orders of 100 units from both items 1 and 2, and 80 units from
single source, item 2. If we combine these two separate orders
and assemble all 180 units into items 1 and 2 in period 1, 80
units of item 3 inventory and the same amount of itemks
inventory, will be moved up to the level of item 2 and stored as
item 2 inventory in period 1. Furthermore, we release one
combined order of 100 units for item 2 in period 1.

Then we could save $160 of inventory carrying cost ( $ 80 for
item 3 and $ 80 for item 5 ) and $ 100 of setup cost for item 2
while incurring $ 200 of new inventory carrying cost ( 80 units X
$ 2.5 for item 2 ). Net savings from this combination of separate
orders run §$ 60. A series of similar decision making on
combination of orders can be made in period 4 for item 3 and in
period 3 for item 4.

After we finish revising the current MEOQ schedule, a new

schedule is generated as follows,
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ITEM 1

period 1 2 3
GR 50 30 60
OHI 30 40
POR 80 100
ITEM 2

GR 20 70 10
OHI 80 10

POR 100

ITEM 3

GR 180 100
OHI 80

POR 180 100
ITEM 4

GR 80 100
OHI

POR 80 100
ITEM 5

GR 100

OHI

POR 100

Legend:

GR : Gross requirements
OHI: On hand inventory

POR: Planned order release

Carrying Cost
Setup Cost

Total Cost

$ 650
1400
2050

53
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Total inventory cost for the revised schedule is $ 2050, while
total cost for MEOQ model is $ 2215. Net savings from this
modification are § 165, This modified schedule coincides with the
ninth integer solution from mixed integer programming formulation
which took more than 20 CPU seconds of execution time.

We may note that when an order is partially assembled and
partially stored, making decisions on whether or not to combine
this entire order offers a great opportunity for savings in total
inventory cost. For a particular order, if we combine the entire
order, we can save holding cost for the units which otherwise
would be stored for later use in parent assemblies and the setup
cost for its parent item while incurring holding cost for the
units as its parents. Here the trade-off is between the setup
cost for the parent and the echelon holding cost between the
parent and child, and the ratio between the two costs is shown as

follows,

EPP-M[, = ~——mmm S (4.9)

where Sp : Setup cost for the parent
Cp : Carrying cost for the parent

C; ¢ Carrying cost for the child i.

Echelon holding cost is defined in Clark and Scarf (1960) as
incremental costs that are added to the component inventory
carrying costs, as the manufacturing process moves to

successively higher levels. Thus, for any item, the inventory
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carrying costs will be the sum of the carrying costs for its
immediate component items and its echelon cost. This implies that
the carrying costs for an item are at least equal to the sum of
the carrying costs for its immediate components.

The EPP-ML ratio indicates the quantity of the inventory
item which, if we process inventory stored on a component level
to its immediate parent level and save one setup for the parent,
would result in net savings equal to zero.

Therefore, if a schedule includes an inventory of which the
quantity is less than EPP-ML ratio, we can save some inventory
costs by making a decision on the combination of the orders.
Positive net savings can be obtained in the range of quantity
from one up to EPP-ML value for the items involved.

If savings from combination is greater than additional
carrying cost incurred, we can combine separate subassembly
orders and can save the difference. Implementing the logic of
our recursive algorithm, combination of orders saves one or more
setups for immediate parent(s) and eliminates stocking of child
items while causing stocking of parent items instead, with
additional echelon holding cost incurred. Besides the savings in
inventory cost, combining assemblies and/or subassemblies orders
will reduce or simplify paperwork as it reduces or eliminates the
preparation, tracking and costing of production orders for those
assemblies or subassemblies.

Our proposed recursion algorithm mainly consists of two
phases, one in which a single item lot sizing rule sequentially

schedules each stage and the other in which the current schedule
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is revised following the logic described above. This process is
executed stage by stage, and level by level. Detailed description
of our heuristic is presented below.
Step 1. Scheduling
Schedule i th level items ( i =1,2,...;,L ) using a
single item lot sizing rule chosen.
Step 2. Explosion
Explode these into the immediate lower level items
( i.e., i+l st level )
Step 3. Recursion
3.1 Decide the sequence, according to rules below, by which
recursion ( decision making for combination )
procedures are executed in the level.

3.1.1 The most commonly used item, i.e., the item which
has the most parents in the level has a higher
priority.

Revising the schedule of the most commonly used item
tends to have a larger impact on the schedules of
the other items in the system.

3.1.2 The item whose requirement schedule contains more
periods of positive requirement, which is less than
the item's EPP, has a higher priority.

The more periods of positive requirement, which is
less than the item's EPP, the schedule of a certain
item has, the more periods the schedule is likely
to carry items in inventory. Thus, there are more

time periods in which we can make a decision to
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3.1.4
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combine orders.

On the occasion of tie, compare their EPP-ML ratio
vectors. For each item, EPP-ML ratio vector is
generated by listing EPP-ML ratios in decreasing
order. For the purpose of comparison, we may need to
enlarge vectors which contain less elements by
filling with as many zeroes as needed.

The item whose vector is lexicographically greater
than the other vectors has higher priority.

A bigger element ( EPP-ML ratio ) in the vector
indicates that the range, in which net savings are
realized from revising the current schedule, is
rather wide and the chance to achieve positive net
savings is higher in a wider range than in a
narrower one, Furthermore, in the case of equal
quantities in inventory, net savings are greater
with a bigger EPP-ML ratio than with a smaller one.
In the case of a tie, the highest numbered item has

higher priority. ( This is an arbitrary rule.)

3.2 Lot sizing is performed on the k th item in the

sequence decided in step 3.1. ( k =1,2,...,;,n, where

n

is number of items on the level.)

3.3 Make a set of decisions, according to steps below,

on the schedule for the k th item whether to combine

or not throughout planning horizon.

3.3.1

Search for a period, t, into which inventory is

carried.
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3.3.2 For the t th period, compute net savings that can
be realized due to combining orders by examining
the t th period schedules for its immediate parents
and/or these parents' immediate components ( i.e.,
items residing on the same level, i, as the k th
item.

3.3.3 If net savings are positive, reschedule items
involved accordingly.

If net savings are negative, go back to step 3.3.1.

3.4 Setk =k + 1.

Is k greater than n ?
No. Go to Step 3.5.
Yes. Set 1 = i + 1.
Is i greater than L ?
No. Return to Step l.
Yes. Stop.
3.5 Explode the immediate parents ( level i ) into the

k th item in the sequence and return to Step 3.2.

This recursion mechanism captures both the product structure,
demand pattern and cost information contained in the multi-level
problem. Furthermore, since our recursion algorithm can be used
with all single 1level 1lot sizing rules, the logic and
computational efficiency of current MRP systems can be

maintained.
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4.3 Experimental Investigation
Research Methodology

Assumptions to be made during this study are as follows:
(1) Since the component requirements are aggregated by time period
for planning purposes, we assume that all of the requirements for
each period must be available at the beginning period.
(2) All of the requirements for a given period must be met and
cannot be backordered.
(3) The ordering decisions are assumed to occur at regular time
intervals, namely, weekly.
(4) The orders which are placed at the beginning of a period, are
assumed to be available in time to meet the requirements for that
period. This assumption of zero production lead time is not very
restrictive, however, since once the ordering decisions are made,
they can be offset to allow for the production lead time.
(5) We assume that the components are withdrawn from inventory at
once. Therefore the ending inventory level will be used in
computing the inventory carrying cost.

First we formulated a mathematical model for the
multi-level lot sizing problem. The model is in the form of
mixed integer programming and will yield an optimal solution.
Although it may produce an optimal solution, it may require
huge amount of computational time as well as central memory.
Therefore, use of the model in practice may be considered
computationally infeasible, but provides a benchmark with

which proposed heuristics can be compared.
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In order to evaluate our proposed heuristic over as broad
a set of sample problems as possible, the following major
factors are varied: (1) product structure in terms of number of
levels; (2) demand patterns ( master schedule ) for the finished
products in the structure; and (3) degree of commonality ( as

defined in Collier (198l1l) ) of the structure.
Lot Sizing Techniques

The first phase of the study will examine the cost
performances between our proposed recursive algorithm operated
together with single level lot sizing heuristics and when our
recursive heuristic is not operated. The following five lot
sizing techniques, MEOQ, MPOQ, MLTC, Silver-Meal,

Wagner-wWhitin, will be operated.

Product Structure ( Number of Levels)

Product structure refers to the hierarchical processing
pattern of parts and components from raw materials to the
finished products. In the experiment, we create and
use several product structures which are different mainly
in terms of number of 1levels in the structure. This study
will cover problems ranging from three to four levels ( see

appendix I.)
Demand Pattern ( Master Schedule )
One of the problem characteristics is the demand pattern,

that is, the master schedule for the finished products, which
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that is, the master schedule for the finished products, which
gives the scheduled production for each period. The variability
of master schedule demand is measured by the coefficient of
variation ( C_ ) which is defined as demand standard deviation
divided by mean demand. Previous studies have adopted different
sets with different values for CV. Hoo Gon Choi et al. (1984)
used several values of C, ranging from 0 ( constant demand ) to
0.61. Wemmerlov (1982) and Biggs et al. (1976) set the
theoretical C, values to 0.15, 0.58, and 1.14 in order to
represent three different demand patterns. McLaren (1977) chose
five values for master schedule variability with Cv values of
0.3, 0.7, 1.0, 2.0, 3.0. The latter two high values represent
extreme variations or "lumpiness" in the master schedule in that
their expected mean time between demands are 3.75 and 7.50,
respectively. The theoretical CV values for this study will be
set to 0.3, and 1.0 in order to represent two different, but

relatively realistic demand patterns.
Degree of Commonality

It is common practice that an item ( assembly, subassembly,
parts, raw material ) is used in differnt places to be assembled
into higher level items. Common usage of an item by several
parent items, complicates the explosion process ( the computation
of requirements for the lower level items ) in MRP systems.
Common usage of items in a manufacturing environment implies
definitely a reduction in the number of items in the inventory

system, and possibly a reduction in the total investment in
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inventory.
A measure used for different levels of common usage is the

degree of commonality as defined by Collier.

a+i
p P
j=i+tl1
DC = crmemmmeemeree e ( 4.8 )
d
where P. = the number of immediate parents that component j

]
has over a set of end items or product structure

levels
d = the number of distinctive components in the set of
end items or product structure levels
i = the number of end items or the number of highest

level parent items for the product structure levels

E = the total number of immediate parents for all
distinct component parts over a set of end items or
product structure levels

The lower bound on degree of commonality is one, which occurs
in the case where there is no common item used in the whole
system. The upper bound, on the other hand, is E, which occurs
when only one component is used for the production of all end
products in the system.

a+i
E = Y. P,
3=i+1 J
DC reflects the average number of common parent items

per distinct component part and characterizes different
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structures of products. Collier classified DC of one as zero
commonality, DC of 1.5 as low, DC of 2.0 as medium, and finally
DC of 2.5 as high commonality. Thus, several different degrees of
commonality, ranging from 2zero to high commonality ( 1.0 (=
zero commonality), 1.5, 2.0, and 2.5 ) will be examined in

the experiment.

Cost Parameter

This study uses the concept of echelon stock introduced by
Clark and Scarf (1960), where the echelon stock for an item is
defined as the total inventory in stock for the item, regardless
of its location, that is, whether it exists as itself and is
identified as the particular item, or as a part assembled into
higher level assemblies. Corresponding to this concept, the
echelon holding costs are defined as incremental costs that are
added +oc the component inventory carrying costs, as the
manufacturing process moves to successively higher levels. Thus,
for any item, the inventory holding costs are the sum of the
holding costs for its immediate component items and its echelon
holding costs.

In generating the test problems, we set C ( carrying cost per

unit per period ) = .3 for all raw materials; for the higher
level items, we set C.=e; + 2 Cs; where B(i) is the set of
-7 TyeB(i) J

immediate components of i and e;, the echelon holding cost for
item i, is selected from a uniform distribution with values e,=

0.1, 0.2, 0.3 for the next higher level, e;= 0.2, 0.3, 0.4 for

the next higher level, and e;= 0.2, 0.4, 0.6 for the highest
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level, respectively. We computed Si ( setup cost ) from
S; = EPP; * C; with EPP; selected from a uniferm distribution
with values EPPi= 50, 70, 90, 120.

The major objectives of the experiment are to evaluate the
solution quality and computational efficiency of the proposed lot
sizing heuristic, i.e., the recursion algorithm.

Solution quality for the comparison of treatments, i.e., our
proposed recursion algorithm and McLaren-Whybark setup cost
adjustment algorithm, is measured in terms of the percent
deviation from control treatment, that is, original single level
rule solution cost. Each lot sizing rule under a treatment,
different from the control treatment, is compared to its
counterpart under the control treatment.

Heuristic solution cost Control group

under treatment - heuristic solution cost

Control group heuristic solution cost

The five measures of solution quality £from the f£five
lot sizing rules with each treatment are averaged out and the
average represents the overall solution quality for a
treatment group for a test problem.

Solution quality for the comparison of heuristic rules is
measured in terms of the percent deviation £from a certain base

solution cost, i.e., basic single level W-W solution.

Heuristic solution cost - Basic W-W solution cost

Basic W-W solution cost
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Computational efficiency for the comparison of treatments is
measured in terms of the percent deviation from the base solution
time ( control treatment ). Each lot sizing rule with a
treatment, different from the control treatment, is compared to
its counterpart with the control treatment.

Heuristic solution time Control group

under treatment - heuristic solution time

Control group heuristic solution time

The five measures of solution efficiency from the five lot
sizing rules are averaged out and the average represents overall
solution efficiency for a treatment group for a test problem.

Computing efficiency for the comparison of lot sizing rules
is measured in terms of average elapsed computing time for a
sample problem.

The vehicle for the experiment 1s the computer simulation.
This simulation program is designed to duplicate the major
functions of an MRP system, and can allow us to systematically
vary the experimental factors ( see Appendix II ).

The MRP simulation model is designed to perform similar major
functions of an MRP system, such as input of cost data, the bills
of materials, generation of master schedule, exploding process,
lot sizing, and cost accounting. Since our primary concern,
hovever, is lot sizing, the elapsed computing time measure is for
the lot sizing and recursion function only.

The simulation model developed here can be classified as a

terminating simulation ( even though the real system is
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non-terminating ), since the lot sizing will stop at the end of
the planning horizon. Two replications of 52 period demand
pattern will be made for each C level. Furthermore, to provide
identical conditions in terms of demands under which all 1lot
sizing rules operate for each combination of factor levels, we
will use common random number ( CRN ) strings. This approach 1is
probably the most widely used variance reduction technique in
practice, due to its simplicity and intuitive appeal.

Since we are concerned with the relative overall solution
quality and computational efficiency among the three treatments,
i.e., recursion algorithnm, McLaren—WI;ybark algorithm (M~-W) and
original single level rule ( control group ), two primary
hypotheses are made which may be tested statistically.

The first hypothesis would test whether there are no
differences among the three treatments in terms of solution
quality, i.e., cost performance. The second one would test the
differences among the treatments in terms of computational
efficiency. Each treatment is applied together with the same
five different single level lot sizing rules, namely MEOQ, MPOQ,
MLTC, S-M, and W-W. The average of the five rules' performance
represents the overall performance of each treatment for one test
problem.

Also, as we are concerned with the relative overall solution
quality and computational efficiency among the fifteen heuristic
procedures that are combination of the three treatments and the
five single level lot sizing rules chosen for this study, two

primary hypotheses are made which may be tested statistically.
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They would examine whether there are any differences among the
fifteen lot sizing techniques in terms of cost performance and
computing time, respectively. When compared in terms of cost
performance, each rule's performance is measured in terms of the
percent deviation from the basic W-W solution cost. On the other
hand, when compared in terms of computational efficiency, each
rule's performance is measured in terms of elapsed computing time
for a test problem.

To examine the above four hypotheses, multiple comparison
tests are used to rank the cost performances or computational
efforts required of the treatments and the lot sizing heuristics.
They will also group treatments or rules for which there is no
significant differences in cost performances or computational
efficiency.

Another area for testing involves the factor effects on cost
performance for a given treatment. Three specific hypotheses are
made which may be tested statistically. The three hypotheses test
whether the number of levels in a product structure, the degree
of commonality in a product structure, and the master schedule Cv
have any effects on the treatment in terms of cost performance.

The computational results and analysis of the formal

simulation experiment are presented in the next chapter.
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Chapter 5
Experimental Results

Chapter 4 introduced a methodlogy for evaluating the solution
quality and computational efficiency of heuristic multi-level lot
sizing techniques. The vehicle for this experimental comparison
study is a computerized MRP simulation model. The model was
designed to perform the major functions of a typical MRP system,
and is flexible with respect to the input of various product cost
data, product structure configuration, and master schedule
demands, which determine a test problem. Therefore, lot sizing
heuristics can be evaluated across a wide variety of sample
problems.

This chapter presents the results of the computer simulation
experiment. The procedure used for analysis is described in the
first section. The second section presents the test results of
proposed hypotheses. Finally, conclusions from the research

experiment are presented in the last section.
5.1 Analysis Methodology

Our experimental design is full factorial design with the
four problem factors, i.e., product structure levels, degrees of
commonality, master schedule Cv' and treatments ( single level
rules equipped with recursion algorithm, original single level
rules, single level rules equipped with McLaren-Whybark setup

cost adjustment mechanism ) taking on two, four, two, and three
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levels, respectively. Each combination of factor levels has two
replications. Futhermore, one sample problem is solved by five
single level lot sizing procedures (MEOQ, MPOQ, MLTC, S-M, W-W).
Thus, there are a total of 2 x4 x 2 x3 x2x 5 = 480
observations.

Since our major concern for this study is solution quality
and computational efficiency, two criteria were used to measure
the performance of the treatments and lot sizing rules: (1) total
inventory costs; and (2) the computational time requirements.
However, since the number of items varied for different problems,
ranging from a low of 7 distinctive items to 30 items, the
resulting total inventory costs also varied from $ 145,036 to
$ 656,456. Hence, in order to give an equal weight to each
observation, when comparing the treatments and the lot sizing
techiniques, the total inventory costs had to be normalized. When
comparing the treatments, each basic single level rule under
control treatment is used as the basis for comparing its
counterparts under other treatments. When comparing the lot
sizing heuristics, the single level Wagner-Whitin algorithm (WW)
is used as the basis for comparing the lot sizing techniques for
one test problem.

The other criterion, measured in CPU seconds, is the
computing time required for determining the order schedules for
all items in the system. However, the computational time varies
drastically with different lot sizing rules, especially between
W-w and other heuristics, ranging from a low of .003 seconds with

simple rules such as basic MEOQ, MLTC to .227 seconds with W-W
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equipped with recursion algorithm for the same sample problem.
Thus, when comparing the treatments, the computing time has to be
normalized. Computing time for each rule under control treatment
is used as the basis for comparing the solution efficiency of its
counterparts under different treatments. When comparing the
individual lot sizing techniques, the elapsed computing time in
CPU seconds for the techniques are used.

The experimental hypotheses of Chapter 4 examine the overall
and factor level effects on the cost performances and
computational efficiency, and are summarized in Fig. 5.1. Since
the replication runs varying the demands in the master schedules
introduce a random effect to the experiment, the experimental
hypotheses may be statistically tested.

The use of percentage value as a measure for cost performance
enables us to use standard parametric ANOVA tests on the cost
performance data, as its vaiues are normally distributed and

have generally equal variances.l

However, computational efficiency
measures, regardless of whether they are presented in absolute or
relative terms, are genarally not normally distributed and are
bimodal. Subsequent transformation of efficiency data could not
correct the situation. Therefore, the nonparametric procedure
suggested by Taylor ( McLaren (1977) ) is used for the test on
efficiency data.

To examine the hypotheses H1 and Hy, Tukey's studentized
range test, which is multiple group means comparison test

1 The SAS statistical package was used for applying ANOVA
procedures.
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H, : There is no difference among the three treatments;
treatment 1l: our proposed recursion algorithm;
treatment 2: McLaren—-Whybark's setup cost adjustment;
treatment 3: the basic single level rules without

recursion algorithm;
in terms of solution quality ( cost performance ).

H2 : There is no difference among the three treatments;
treatment 1l: our proposed recursion algorithm;
treatment 2: McLaren-Whybark's setup cost adjustment;
treatment 3: the basic single level rules without

recursion algorithm;
in terms of computational efficiency (computing time).

H3 : There is no difference between the 15 lot sizing

heuristics;

treatment 1 rules: 5 lot sizing rules ( MEOQ, MPOQ,
MLTC, S~-M, WW ) equipped with our proposed recursion
algorithm;

treatment 2 rules: the same 5 lot sizing rules with
McLaren~Whybark's setup cost adjustment mechanism;

treatment 3 rules: the same 5 lot sizing rules without
recursion algorithm;

in terms of solution quality ( cost performance ).

Hy : There is no difference between the 15 lot sizing

heuristics;

treatment 1 rules: 5 lot sizing rules ( MEOQ, MPOQ,
MLTC, S-M, WW ) equipped with our proposed recursion
algorithm;

treatment 2 rules: the same 5 lot sizing rules with
Mclaren-Whybark's setup cost adjustment mechanism;

treatment 3 rules: the same 5 lot sizing rules without
recursion algorithm;

in terms of computational efficiency (computing time).

Number of levels in the product structure has no effect
on the treatment in terms of cost performance.

Hg : Degrees of commonality in the product structure have no
effect on the treatment in terms of cost performance.

H, : Master schedule variability ( C.) has no effect on the
treatment in terms of cost pe¥formance.

Figure 5.1 Experimental Hypotheses
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provided as an option in ANOVA procedure, is used to rank the
cost performances of the treatment and the lot sizing heuristics
and to group those rules for which there is no significant
difference in cost performances. To examine the hypotheses Hy,
and H4, a posteriori contrast multiple comparison test -- devised
for a data set which does not f£it for ANOVA tests -- is used to
rank the computational efforts required of the treatments and the
lot sizing heuristics and to group those rules for which there is
no significant difference in computational efficiency. To examine
the hypotheses Hs, H6' and H7, standard parametric ANOVA tests

are used,
5.2 Overall Results and Testing of Experimental Hypotheses

For each of the three treatments, there are solution quality
and computational efficiency measures for each test problem.
Table 5.1 and 5.2 show the overall and marginal cost performance
means and computing time means for the treatments, respectively.
Marginal means are obtained for each factor level by holding that
factor level constant and calculating the mean cost performance
for all other observations. Detailed analyses of these two

tables are presented in subsequent sections.

Table 5.3 highlights the ranked overall solution quality for
all three treatments from Table 5.1. Due to the usage of

percentage value, the sample means are normally distributed, and
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Table 5.1

OVERALL AND MARGINAL MEAN COST PERFORMANCE
TREATMENT COMPARISON

Treatment 1 Treatment 2 Treatment 3
(Control Group)

e G — s " T — — g Y (At (L P o A d s P Gt Py Gt P S WD P Pt e G Uk et S Pl G ¢ et G e Y TR A Sttt S Gt s G St Bt Gt S

Mean Standard Mean Standard Mean Standard

n Deviation Deviation Deviation

Cverall 32 -7.612 4.843 -3.808 4.606 0 0
Product

Structure

3levels 16 -6.366 4.232 -1,792 5,713 0 0
4levels 16 -8.858 5.220 -5.826 2.899 0 0
Degree of

Commonality

Zero 8 -3.778 1.303 -7.195 1.653 0 0
Low 8 -7.296 4.407 -6.130 3.267 0 0
Medium 8 -7.913 4.560 -1.150 2.070 0 0
High 8 -11.460 5.293 -0.758 6.190 0 0
Master

Schedule Cv

0.3 16 -10.335 4.756 -5.470 4.446 0 0
1.0 16 -4.888 3.166 -2.147 4.266 0 0

Treatment 1 : Recursion Algorithm

Treatment 2 : McLaren-Whybark Setup Cost Adjustment

Treatment 3 : Basic Single Level Rule Only

n = number of observations
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Table 5.2

OVERALL AND MARGINAL MEAN COMPUTATIONAL EFFICIENCY
TREATMENT COMPARISON

Treatment 1 Treatment 2 Treatment 3
( control group )
n Mean Standard Mean Standard Mean Standard
Deviation Deviation Deviation
1 32 165.43 40.47 -3.83 10.62 0 0
t
ture
1 16 152.17 39.48 -4.55 11,92 0 0
l 16 178.69 38.10 -3.10 9.48 0 0
of
nality
8 127.25 23.76 4.33 8.70 0 0
163,51 35.66 -6.71 10.14 0 0
8 182.70 42 .06 ~-6.82 5.56 0 0
8 188.27 32.28 -6.11 13.71 0 0
ule Cv
16 181.56 35.99 -3.36 10,03 0 0
16 149,30 39,17 -4.30 11.49 0 0
eatment 1 : Recursion Algorithm

eatment 2 : McLaren-Whybark Setup Cost Adjustment
eatment 3 : Basic Single Level Rule Only

= number of observations
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fit an ANOVA model well. Thus, Tukey's studentized range test,
which is providesas an option for mean comparison test in the
ANOVA procedure, is used to rank the treatments in terms of cost
performance. This test controls the type I experimentwise error
rate, instead of controlling the type I comparisonwise error rate
like the t test does. It should be noted that there is no
significant difference in means between any two groups belonging

to the same subset at some prescribed significance level, .

Table 5.3

TUKEY'S STUDENTIZED RANGE TEST
FOR COST PERFORMANCE
TREATMENT COMPARISON

Subset Treatments Mean Standard Minimum Maximum
Deviation Value Value
1l Treatment 1 -7.612 4.843 -18.19 -2.01
2 Treatment 2 -3.808 4.606 -10.32 7.66
3 Treatment 3 0.0 0.0 0.0 0.0

- — — — G G S G G0 B D G P G SRS S G G0 A e G G A (P G QS (P S G G G U6 et S Gt WG I N (lut e S S S S Gt S S W B Gy S b B G P G W S G

Table 5.3 also shows the results of the Tukey's studentized
range test for the treatments for d= 0.05. We note that H; must
be rejected. There is a significant difference among the three
treatments' cost performance at the & = 0.05 level. These values
are based on an average of cost performances of five lot sizing
rules for one sample problem. Actual t statistics and p-values

obtained from a set of pairwise t test is shown in Table 5.4.
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Table 5.4
T STATISTICS AND P-VALUES

i s S S Gws G S S S G G I I SIS S G G Gt A B WS . G GRS s G e S GEE 6 QI ST SR G G GRS A e Gt e SO S G G (AP SR G S (R S S B A e G G QNS Gt B b

Treatment Comparison t statistic p-value
2 vs., 1 6.505 < 0.001
3 vs. 2 6.514 < 0.001

Generally speaking, Treatment 1 appears to outperform Treatment 3
most of the times; the maximum value of treatment 1 is still

negative, while the maximum value of Treatment 2 is well above 0.

—— o f— s e

Table 5.5 highlights the ranked overall solution efficiency
for all three treatments from Table 5.2. The data set of
solution efficiency has bimodal distribution and could not fit an
ANOVA model even with transformation. Thus, Tukey's studentized
range test cannot be used to rank the treatments in terms of
computing efficiency. Instead, Taylor's multiple comparison test,
which was designed to perform comparison tests on data with
unequal group variances, may be used. The Taylor procedure is
based on the concept of multiple confidence intervals for ranked
group means, using a significance level, &', modified to provide
an experimentwise error rate of. (1 - o' ) confidence intervals
are constructed around each group mean. All those groups having

overlaps in confidence intervals are classified into a subset.
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The interpretation of a subset is that the group means within the
subset do not differ by more than a prescribed level of
confidence, and that the group means between subsets do differ by
more than the prescribed level. The level o' is obtained as &/ k,
where k is the number of the group means and ( 1 -) is the

confidence level for the entire experiment.

Table 5.5
TUKEY'S STUDENTIZED RANGE TEST

FOR COMPUTING TIME
TREATMENT COMPARISON

Subset Treatments Mean Standard Minimum Maximum
Deviation Value Value
Treatment 3 0.0 0.0 0.0 0.0

2 Treatment 1 165.4 40.47 87.20 235.10

We see that H2 must also be rejected; there is a significant
difference in relative computational efficiency between
Treatments 2, 3 and Treatment 1. Between Treatments 2 and 3, the
difference in efficiency is not statistically different at =0.05
level. Generally speaking, the recursion algorithm seems to take
more than twice as much as the original rule or setup cost
adjustment mechanism. Table 5.6 shows t statistics and

corresponding p-values for a set of pairwise t test.
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Table 5.6
T STATISTICS AND P-VALUES

A Bt e S S G LY S S O e S W G G G S S Yt G WD G Fee G U S S U G Mt Gt s G e S PP (T G (R U G G G S Ge0 S Gt GG S GuS I G G S GFR EMS IR G S S W S

Treatment Comparison t statistic p—-value
2 vs. 1 34.160 < 0.001
3 wvs. 1 33.387 < 0.001
3 vs. 2 0.773 < 0.5
H3 Test

Table 5.7 shows the ranked overall solution quality for all
fifteen lot sizing rules, which is a combination of five rules
and three treatments. Due to the usage of percentage value, the
sample means are generally normally distributed, and £it for the
use of an ANOVA model. Thus, Tukey's studentized range test is
used to rank the lot sizing rules in terms of cost performance.

Table 5.8 shows the results of the Tukey's studentized range
test for the fifteen lot sizing rules for o = 0.05. The basic W-W
rule was used as basis here in this comparison. We find that Hy
must be rejected; there are significant differences among the
cost perfomances of the lot sizing rules at the d= 0.05 level.

All the rules equipped with the recursion algorithm rank
high. All the rules but MPOQ equipped with McLaren-Whybark setup
cost adjustment mechanism take middle ranks, while all the simple
rules generally take bottom ranks. McLaren (1977) reported that

W~W rule with setup cost adjustmeht mechanism dominated all other
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Table 5.7
COST PERFORMANCE CONTRAST

Rank Rules? Mean Standard Minimum Maximum
Deviation Value Value

1 R/MLTC -7.83 7.15 -23.82 0.76
2 R/MEOQ -7.79 6.85 -25.52 1.22
3 R/W-W -5.84 4.07 -16.69 0.20

4 M/W-W -5.83 4.01 -11.76 5.30
5 R/MPOQ ~4.65 7.31 -23.85 6.76
6 R/S-M -3.94 5.35 -15.32 2.91
7 M/S-M -3.46 2.56 -8.82 0.61
8 M/MLTC -2.75 5.48 -10.29 10.12
9 M/MEOQ -1.35 5.95 -10.86 11.81
10 B/W-W 0.0 0.0 0.0 0.0
11 B/MLTC 1.33 1.99 -1.65 8.90
12 B/MPOQ 2.37 2,50 -0.89 7 .80
13 B/S-M 2.58 2.20 -0.30 9.44
14 M/MPOQ 2.91 8.72 -10.37 24.99
15 B/MEOQ 3.03 1.82 -0.63 9.84

2

Prefix R, M, and B represents the three different
treatments, i.e., recursion algorithm, McLaren-Whybark's setup
cost adjustment, and basic rule, respectively.
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combination rules examined in his study and performed quite well
relative to his multi-level dynamic programming model. The multi-
level dynamic programming model does not guarantee optimal
solution but in his earlier (1975) study allegedly produced the
same solutions as did the optimal MIP algorithm for the 32 six-

and eight-period planning horizon sample problems.

Table 5.9 shows the ranked overall solution efficiency for
all fifteen lot sizing rules. The data set of solution
efficiency for 1lot sizing rules shows a skewed, bimodal
distribution and could not fit an ANOVA model even with
tranformation. Thus, Taylor's multiple comparison test may be
used.

Table 5.10 shows the results of the Taylor multiple
comparison test for the fifteen lot sizing rules at o = 0.05
level. We see that H4 should be rejected; there are significant
differences in computational time among the lot sizing rules at
o= 0.,05. All the Treatment 2 and Treatment 3 rules except W-W
algorithm are in the first subset; they are not significantly
different in terms of computing time. All the Treament 1 rules
except W-W constitute the second subset. The third subset is
composed of W-W algorithms across all the treatments. There are a
few rules that outperform W-W with setup cost adjustment

consuming less time, i.e., R/MLTC and R/MEOQ.
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Table 5.9

COMPUTING TIME PERFORMANCE

Rank Rules Mean Standard Confidence Intervals
Deviation A= 0.05

1 B/MLTC 0.0073 0.0034 0.0056 0.0091
2 M/LTC 0.0075 0.0037 0.0055 0.0094
3 B/5-M 0.0085 0.0041 0.0063 0.0107
4 M/MPOQ 0.0087 0.0047 0.0062 0.0112
5 M/S-M 0.0088 0.0046 0.0063 0.0112
6 M/MEOQ 0.0094 0.0046 0.0070 0.0118
7 B/MPOQ 0.0105 0.0044 0.0082 0.0128
8 B/MEOQ 0.0112 0.0055 0.0083 0.0140
9 R/S-M 0.0246 0.0115 0.0185 0.0306
10 R/MLTC 0.0255 0.0121 0.0191 0.0319
11 R/MEOQ 0.0284 0.0119 0.0222 0.0347
12 R/S-M 0.0298 0.0137 0.0226 0.0371
13 M/W-w 0.3840 0.1848 0.2885 0.4820
14 B/W~-W 0.3853 0.1833 0.3068 0.5003
15 R/W-W 0.4035 0.1920 0.3022 0.5048

e e e e e e e e e

Prefix R, M, and B represents the three different
treatments, i.e., recursion algorithm, McLaren-Whybark's setup
cost adjustment, and basic rule, respectively.
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Table 5.10

TAYLOR MULTIPLE COMPARISON TEST
FOR COMPUTING TIME

( = 0.05)
Subset4 Lot Sizing Rules5
1 B/MLTC M/MLTC M/POQ B/S-M M/S-M
M/MEOQ B/MPOQ B/MEOQ
2 R/MEOQ R/MPOQ R/MLTC R/S-M

" (a0 06 G T B G G G G SR BE G G S G G D B U G G GRS S G G A GER S G S GED S P S G0 6 GED GHD G e WA e GUm (S S G (S G WS N W S EME S G G 0 G e GU e

The difference between any two group means within a subset
is not statistically significant at the K= 0.05 level.

5 Prefix R, M, and B represents the three different
treatments, i.e., recursion algorithm, McLaren-Whybark's setup
cost adjustment, and basic rule, respectively.
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U5r_Hg: By Tests

Since, we set the cost performance of Treatment 3 as the
base, the measure is always zero. Thus, the problem factors have
no effect on this measure so that treatment 3 is excluded from
this analysis. Table 5.11 summarizes the test results for the
three effects of problem factor on cost performance hypotheses.
An X in a cell indicates that the hypothesis for the factor and
treatment is rejected at the 0.05 level. Rejection of the null
hypothesis implies that the cost performance of the treatment
varies significantly for different values of the problem factor.

Table 5.12 shows marginal mean cost performance for each

factor level when compared treatmentwise.

Table 5.11

ANOVA RESULTS
FACTOR EFFECTS ON COST PERFORMANCE

TREATMENT 1  TREATMENT 2

Hg : Number of levels X X
Hg : Degree of Commonality X X
H7: Master Schedule Cv X X

2-Way ANOVA

o e S S W 8 P et R0 G Gy G GO WSO G G M S U TME G Gun G G NS dRas GUn GVRS AU (LD GRS SIS S G s (b VD (D GeN fell GE GEE G S Y S Gab G Pt GNS G B G G G MDA DA S S e G G




Table 5.12

MARGINAL MEAN COST PERFORMANCE
TREATMENT COMPARISON

84

Mean Standard Mean Standard
Deviation Deviation
Product
Structure
3 Level -6.366 4.232 -1.792 5.713
4 level -8.858 5.220 -5.826 2.899
Degree of
Commonality
Zero -3.778 1.303 -7.195 1.653
Low -7.296 4.407 -6.130 3.267
Medium -7.913 4.560 -1.150 2.070
High -11.460 5.293 -0.758 6.190
Master
Schedule C
v
0.3 -10.335 4.756 -5.470 4.446
1.0 -4.888 3.166 -2.147 4.266
Treatment 1 Treatment 2
3-level 4-level 3-level 4-~level
Mean Mean Mean Mean
Degree of
Commonality
Zero -3.800 ~-3.755 -6.,662 -7.727
Low -6 .050 ~-8.543 -5.238 -7.023
Medium -6.633 -9.193 0.513 -2.813
High -8.980 -13.94 4.225 -5.743

Treatment 1
Treatment 2
Treatment 3

Recursion Algorithm
McLaren-Whybark Setup Cost Adjustment
Basic Single Level Rule Only
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These results in the Table 5.12 can be diagrammed as in
Figures 5.2, 5.3, 5.4, and 5.5. Fig. 5.2 shows the effects of
number of levels on the treatment's cost performance. Both
Treatments 1 and 2 move in the same direction and they appear to
perform better on the product structure with 4 levels than with 3
levels. The mean difference between the two treatments are
significant at both levels at 0.05 level.

Fig. 5.3 reveals the effects of degrees of commonality on the
treatment's cost performance. Treatments 1 and 2 take opposite
directions. Treatment 1 performed better with product structures
with a low to high degree of commonality. On the other hand,
Treatment 2 performed better with product structures with zero
degree of commonality. The mean differences in cost performance
between the treatments are significant at all levels but one at
low degree of commonality.

Fig 5.4 shows the effects of master schedule variability on
the treatment's performance. Both treatments move in the same
direction; they perform better on rather low demand Cv‘ Treatment
1l is performing better than Treatment 2 at both Cv levels and
the mean difference between the two treatments are significant
across the levels.

Fig. 5.5 depicts the interaction effects of number of levels
and degree of commonality on the treatment's cost performance.
Generally speaking, both treatments obtain better results on the
4-level structure than on the 3-level one, and the margin gets
wider as they move on the high end of degree of commonality. It

should also be noted that Treatment 1 generally performs better
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Treatment 2

Treatment 1

Zero Low Medium High

Degree of Commonality

Fig. 5.3 Effects of Degree of Commonnality

on the Treatment's Cost Performance




Fig. 5.4
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Treatment 2

Treatment 1

Master Schedule Cv

Effects of Master schedule Cv

on the Treatment's Cost Performance
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as it +oves on the high end of degree of commonality, while
Treatment 2 generally performs worse as it moves on the high end
of degree of commonality except one case, i.e., 4-level structure

with high degree of commonality.
5.3 Conclusions

In this chapter we have examined the major experimental
hypotheses using a formal, statistically designed simulation
experiment.

We have seen that Treatment 1, i.e., the recursion algorithm,
provides lower cost solutions, on average, than the McLaren-
Whybark setup cost adjustment mechanism and the sequential
application of basic single level lot sizing rules. However, the
lack of optimal solutions for the test problems prohibited us
from describing the general solution quality of the rules
equipped with the recursion algorithm. Two heuristics ( MLTC and
MEOQ ) with recursion procedure significantly outperform the W-W
with setup cost adjustment which was used as the basis in MclLaren
(1977) because of its superior performance in cost savings.
Furthermore, they require less computing tinme.

However, the computing times of the rules with this recursion
algorithm are generally two to three times larger than the com-
puting times for their counterparts under control treatment or
the setup cost adjustment treatment with the exception of W-w
algorithm. In the case of W-W, the recursion algorithm is only 4
to 5% larger than its counterpart under two other treatments,

namely W-W with McLaren-Whybark adjustment and basic W-W.
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Considering the two criteria, i.e., cost and time, for a
small penalty in computational requirements, compared to control
treatment and McLaren-Whybark setup cost adjustment treatment,
the four lot sizing heuristics ( MLTC, MEOQ, MP0OQ, S-M ) with
recursion procedure present solutions that offer significant cost
savings. They outperform or compare very favorably with W-w
with setup cost adjustment solution, but have much lower
computational requirenments.

Another point of significance was that as the degree of
commonality increased, our recursion algorithm yielded solutions
that were increasingly superior to those obtained with McLaren-
Whybark methods or basic rules. The same is true with the factor
of number of levels in a product structure. The more levels a
product structure has, the better the solutions produced by the
Treatments 1 and 2, with Treatment 1 outperforming Treatment 2,

For the effect of demand variability ( CV ) on performance,
it was found that the master schedule with lower variability in
terms of coefficient of variation resulted in lower costs across
the treatments. For rather highly lumpy demand ( higher CV )
pattern, both treatments could not perform as well as they did in
the low end of CV. A master schedule having large expected TBO
(time between order) value may not offer as many opportunities
or occasions for Treatment 1 to make improvements on the
order schedule obtained by the original rules. This judgement
is supported by the fact that Treatment 1 required less
computational time for the higher Cv demand pattern. Percentage

increase value reduced from 181.6 to 149.3 ( see Table 5.2).
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The next chapter presents brief conclusions and contributions
from the study and suggests future extensions for further

research.
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Chapter 6
Conclusions, Contributions, and Extensions

The primary objective of this study was the development and
evaluation of simple lot sizing techniques that can be applied
effectively and efficiently to existing MRP systems dealing with
multi-level product structure. Most current MRP system users are
choosing simple single level rules ( EOQ, POQ, LTC etc., ) which
do not utilize the vertical dependency and horizontal commonality
relationships, let alone useful and valuable informations such as
other relevant items' order schedules made available by MRP.

This chapter summarizes the research and presents the
conclusions from the study. Contributions of this study are
cited. This chapter concludes with suggested directions for

further research.
6.1 Conclusions

The three popular lot sizing rules ( EOQ, POQ, LTC ) were
modified for the single level, and multi-level problem as well.
The three modified lot sizing rules operate on the part period
accumulation principle besides their original mechanism. The
modifications to three lot sizing rules suggested improve the
basic rules by examining the demand variations from period to
period through Economic Part Period computations.

Each modified heuristic dominates its predecessor in a cost

comparison in our experiments. Average cost reduction rates
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from their counterparts are very high, more than 80% across the
rules. The chances that the three modified heuristics produce the
optimal solutions are also very high ranging from B4% to 88%.
Furthermore, the three heuristics did not outperform their
modified versions on any occasion.

These modified heuristics may not appropriately solve the
realistic MRP system problem which necessarily entails
multi-level, multi-product situation. However, they may be
applied to the multi—1level lot sizing problem. When they are used
for the multi-level problem, they must be the most time—efficient
heuristics which provide good quality solutions.

It was shown that the vertical dependency and horizontal
commonality can be taken into account. The recursion procedure
reschedules following the logic of the proposed recursion
procedure, the original schedule obtained by applying basic
single level rules, which are generally used among current MRP
users.

The recursion algorithm was developed in this study noting
that when an order is partially assembled and partially stored,
making decisions on whether or not to combine this entire order
offers a great opportunity for savings in total inventory cost.

For the study in this dissertation, two other approaches,
besides the recursion algorithm, are analyzed to examine and
compare effectiveness and efficiency of our proposed recursion
algorithm. One is McLaren-Whybark's setup cost adjustment
mechanism which was devised for the multi-level lot sizing

problem. The other is a sequential application of single level
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lot sizing rules to all the items residing in the multi- level
Both the recursion algorithm and McLaren-Whybark's adjustment
method obtain cost benefits over the single level rules by either
modifying the lot schedule obtained by single level rules or
modifying cost information and using the adjusted cost data in
single level rules.

The three treatments, i.e., recursion algorithm,
McLaren-Whybark setup cost adjustment and a sequential
application of single level lot sizing rules, were applied to the
five selected single level lot sizing rules of which three are
the modified rules in this study. The treatments and individual
rules were compared with respect to cost performance and
computational efficiency. Factors such as the number of levels in
the product structure, the degree of commonality and the master
schedule variability were varied so as to study the performance
of the treatments and lot sizing techniques over the various
operating conditions. The 1limitations of the experiment
were the assumptions of unlimited production capacity and no
uncertainty in demand.

All the lot sizing rules with recursion algorithm performed
very well with respect to cost performance. In particular, the
MLTC and MEOQ rules with recursion algorithm provided the lowest
total cost solutions, on average, and outperformed W-W with
McLaren-Whybark adjustment, which was used as the base procedure
because of its superior cost performance. Furthermore, they have
much less time requirements. The other rules with recursion

algorithm also performed significantly better than other
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treatment rules. However, tne recursion algorithm generally had
two to three times larger time requirements compared to the other
two treatments.

Other obsevations on the performance of recursion algorithm
were also made from the computational results. The first was that
the inventory costs decreased rapidly as the degree of
commonality increased. The second was that the inventory costs
performed increasingly better as the number of the levels in the
product structure increased. The third was that the recursion
algorithm worked better in the lower end of master schedule
variability rather than in the high end of variability. However,
in both variability levels, it outperformed the other two

treatments rules.

6.2 Contributions

The research in this dissertation has addressed one important
problem area of MRP system: multi-level lot sizing, and suggests
heuristic methods to obtain better solutions.

There are two specific areas in which contributions have been
made:

(1) A recursion algorithm has been developed and tested. It
exploits useful and valuable information, such as other items'
order schedules, especially relevant items in terms of dependency
and commonality relationships. Other approaches have neglected
or failed to utilize them. The recursion procedure may be used
with any existing lot sizing technique for multi-level lot sizing

in an MRP system.
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(2) Three popular single level lot sizing rules have been
modified and documented. These rules can also be used as multi-
level lot sizing rules. In the case of single level, they
performed very well and outperformed their predecessors and
compared very favorably with optimal W-W for single level lot
sizing problem.

They performed very well with the recursion algorithm for
multi-level lot sizing problems as well. Results from the
simulation experiment indicate that although the mcdified rules
have larger computational requirements, they provide very high
quality solutions across the wide variety of operating
conditions, The question is the trade-off between extra-time
requirements and cost savings in inventory investment resulting
from using the recursion algorithm. The impressive advances in
computer technology would make more feasible and practical the

introduction of the recursion algorithm to the real world.
6.3 Suggestions for Further Research

There are several directions in which the research in this
dissertation may be extended. The first direction involves
improving some drawbacks, in the proposed algorithm. Another area
involves relaxing some of the limiting assumptions made in the
study. A third area involves the field testing of the proposed
recursion algorithm.

Perhaps the most important and urgent area for further
research is the area of time reduction efforts in the recursion

algorithm as it usually has relatively larger time requirements.
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The extended study may determine the economic number of levels in
the high end of product structure hierarchy to which the
recursion procedures are applied that will provide more
time-efficient solutions but not sacrificing solution quality in
terms of cost. This could be done by varying the number of top
levels to which the procedures are applied in a series of
experiments and comparing the performances of variations.

The study assumed that rough-cut capacity considerations were
taken into account in obtaining the master schedule. It also
assumed that there were no capacity limitations for lower level
items as well. There arises some questions as to whether the
larger lot sizes, due to combining the orders following the logic
of recursion procedure, could cause any difficulties or conflicts
with respect to capacity. As most production systems have limited
capacity and limited resources, an extension to this study would
be the inclusion of capacity limitations.

For this study, demand was assumed to be deterministic and
the study did not allow for backorders. Whybark and Williams
(1976) have examined the effects of uncertainty in the MRP
system. Kumar (1983) analyzed the efficacy of buffering
techniques such as safety stock and safety lead times when
uncertainty is present using a simulation study. Thus a useful
extension to this research is to study the effects of stochastic
demand on the performance of the treatments and lot sizing
techniques.

Besides relaxing those assumptions of the study, there is yet

another direction in which the study may be extended, namely
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field test of the recursion algorithm proposed in the

dissertation. This may be done after extensive tests of the

recursion algorithm with actual data from practice.
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PRODUCT STRUCTURES
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Product Structures
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2) 4 levels
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COMPUTER PROGRAMS
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FROGRAM MRF3IZ (INFUT,OUTFUT)

THIS IS FOR 3-LEVEL FRODUCT STRUCTURE
MULTI—-LEVEL LOT-SIZING FPROELEM ¢t MAIN PROGRAM

FROGRAM FARAMETERS
INTEGER L L1y L2y L3y L4y Sy FIn NRy NLEVEL
FARAMETER ( L=2» Li= 4y L2= 8» L3= 0»L4=0,5=14,F0I=52,

A NR= Ty NLEVEL= 2 )

COMMON ELOCKNS USEL
COMMON STRUCT(S=1.2y S-LITAR(S»3,FD) » COST(2> S)EFF(2:8)

Z MAT(3»S)y SETC(Z»8)y HOLIDC(2:S)y FROEB(S)y MOVE,
Z SUMINV(S) » NSETUF(S)»NEELD(S) » LEVELS, DINWARLD» IFLAG:
Z CFU(NR»3) » TOTAL.(NR»3) s TIME» MTIME,» ILOOF

INTEGER STRUCT» TaEr Ay Ty SUMINVy NSETUFy LLEVELS
REAL COST» EFFy» MAT» SETC,» HOLDC, CFU»y TOTAL » TIME
LLOGICAL FLAGy FROEs ON» NEEL» DIINWARD > MOVE

LoCAl. VARIARLES
INTEGER IFAR(L+L1)y MUSE(LtLL)

READ FROLUCT STRUCTURE MATRIX

FRINT®y” PRODUCT STRUCTURE MATRIX FOR THIS CASE’
FRINTXy” ~
Lo 10 IR= 1y 5-L2
FRINTX, 7 ROW 7, IR
READN 112 ¢ STRUCT(IRYIC)» IC= 1y8-L 2
FORMAT ¢ 12(I1) )
CONTINUE

VARY DIEMAND FATTERN TWICE» IN TERMS OF DEMAND CV
DD 200 IVARI= 1y 2

RUN 2 REFLICATION RUNS
DD 300 LRUN= 1, 2

GENERATE DEMAND PATTERN

DO 40 I= 1L
CoLL DEMAND ( I» IRUNs IVARI )
CONTINUE

READ COST DATA IN MATRIX COST

FRTINTXs/ COST STRUCTURE FOR THIS CASE“

FRINTXy’ 7

R L N T K 4 e e e e s e e e e e e e et o e -
CALL COSTIN




C
c
C1
co
C

Do 20 IR= 1, 4
READ 21+¢ COST(IRsIC)y IC= 1v8 )
FORMAT (10(F3.1+1X) )

CONTINUE

C ESTARLISH COST ANT: EPF INFORMATION

C

C USING LOT-SIZING RULES»

0 80 IR =1, 3
Do 80 JC = 1y 8
MATC(IRyJCY = 0.0
CONTINUE

8L I =18
CalLl. COSDATA ( I )
CONTINUE

CUMMT= 0.0
D082 I =1, 8
CALL MATRIX ¢ I )
CUMMT= CUMMT+ MTIME
CONTINUIE

N 84 1 =1y 8
CALL MCLAREN ¢ I )
CUMMT= CUMMT+ MTIME
CONTINUE

TU= L

Iv= TUt L1
tW= TV+ L2
IX= IW+ L3
IY= IX+ LA

C USE THREE DIFFERENT TREATMENTS

C FIRSTy

C SECONID, ORIGINAL SINGLE LEVEL RULES ¢ CONTROL GROUF )

C THIRDy SINGLE LEVEL RULES WITH MCLAREN SETUF COST ADJUST.

c

Coo1
1001

002
1002

Co03
1003
G

1900

no 1000 ILOOF = 1y 3 -
GO TO ¢ 1001, 1002y 1003) ILOOF
FRINT*®» /SINGLE LEVEL RULES USELD' WITH RECURSION’
h =1
G0 7O 1900
FRINTX» ‘SINGILE LEVEL RULES ONLY USEDR'
=1
GO TO 1900
FRINTX» ‘SETUP COST ADJUSTMENT USED-MCLAREN’

A =2

CONTINUE
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ORIGINAL SINGLE LEVEL RULES WITH PROFOSED RECURSION FROC,
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41

13

O

59
31

L

tn
[ 2=)

463

nog 100 IFLAG = 1y NR

INITIALIZE MRF TAELEAU
DO 29 I= 1y L
no 29 J= 2,3
00 29 7= 1 PI
TAR(IsJe T)= 0
CONTINUE
ng 30 I=L+ly §
[0 30 J= Ly 3
ng 30 1= 1y FD
TAR (L JrT)
CONTINUE

IF( ILOOP .GTs 1) G

CUMSEC= 0.0

Do 41 I= 1L
CALL LLSR ( Is Ay I
Call SUMARY ¢ 1)
CUMSEC= CUMSECH TI

CONTINUE

nn 42 1 = 14y 8
PRODCIE) = +FALSE,
NEEDCT)Y= FALSE,

CONTINUE
TLEVEL = 1

GO TO ¢ S1y S22y G3
LEVELT = L1
LEVELS = IVU+ 1
GO TO 60
LEVFLI = L2
LEVELS = IWt+ 1
GO TO 60
LEVELI = L3
LEVELS = IX+ 1
GO TQ &0
LEVELT = L4
LEVELS = IY+ 1

0o 61 K= 1y LEVELI
I= LEVELS- K
o 62 J = 1s S-L2

= 0

0O TO 240

FLAG )
ME

94 ) ILEVEL

IFC STRUCT C(JrI-L)> LNE. O ITHEN

IUSE = STRUCT(

S I-L)

NO 37T = 1y FI

TABC(L » L9 T)=
CONTINUE
ENRIF
CONTINUE

TAR(I+1 s T)+ TUSEX TARCJI93»T)
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41
G

71

73

CALL LSR ( I» Ay LFLAG )
CALL SUMARY € I )
CUMSEC= CUNSEC+H TIME

INWARD = FALSE .
CALL RECUWR ¢ I)

CUMSEC= CUMSEC+ TIME
T LUNTINUE

N0 70 ITER= 1y LLEVEL
TFCILEVEL.GE+ 2 JANDY ITER.LT.ILEVEL) DNWARD = . TRUE.,
GO TO ( 71y 72y 73» 74 ) ITER
IBEGIN= It 1
IEND= IV
GO TO 79
IBEGIN= IVt 1
TEND= IW
GO TO 79
TREGTN= IWt+ 1
TEND= IX
GO TO 79
IREGIN= IX+ 1
IEND= TIY

o 78 I = IREGINy» IEND
IF ( NEEMMTI D> ) THEN
CALL RECUR(I)
CUMSEC= CUMSEC+ TIME
ENDIF
CONT INUE
INWARD = JFALSE,
CONTINUE

IF(TLEVEL ,ER, NLEVEL ) G0 TO 109
ILEVEL= ILEVEL+ 1
G0 TO 59

CUMSEC= 0.0
DO 241 I= 1, &
CALL LSR( Iy Ay IFLAG )
CUMSEC= CUMSEC+ TIME
IFC I LEG, S > GO TO 109
INEXT= I+ 1
IF( INEXT LE« L GO TO 241
N0 245 J= 1y S-L2
IF¢ STRUCTC I INEXT=L) +NE. O )THEN
TUSE= STRUICT(Js INEXT-L)
no 247 T=1y FD
TAB(INEX T 1y T)=TARCINEXT» Ly TIHIUSEXRTAEC(J»3»T)
CONTINUE
ENDIF
CONTINUE
CONTINUE
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IF¢ [LOOF LEQ. 3 )THEN
CUMSEC= CUMSECY CUMMT

ENDIF
109 CFUC IFLAG: ILOOF )= CUMSEC
D0 110 I= 1» §
CAaLL PRINT ¢ T )
110  CONTTNUE

G
100  CONTINUE

1000 CONTINUE

Cal.L. FRINOUT
300  CONTINUE

c

200 CONTINUE
STOF
END

SUBROUTINE LSR ¢ I» Ay JFLAG )

¥

c
C CALLS VARIOUS NINDS OF LOT SIZING RULE
C
C

FROGRAM FARAMETERS
INTEGER Ly Lly L2y L3y L4y 8y PDy NRy NLEVEL
PARAMETER ( L=2y Ll= 4y L2= 8y L3= 0r1L4=09S=14yFI=52y
Z NR= Sy NLEVEL= 22 )
C COMMON ELUCKS USED
COMMON STRUCT(S~L2y S=L)»TAR(S»3+FD)yCOST(2yS)yEFF(2+S)
MAT(3:8)y SETC(2+S)y, HOLDC(2+8)y PROB(S)y MOVE,
SUMINV(S )Yy NSETUF(S)INEED(S)s».LEVELS y INWARD IFLAGY
CPUINRs3) s TOTAL(NRy3)y TIME, MTIME, ILOOP

NNN

INTEGER STRUCTy TAEs A Ty SUMINV, NSETUF, LEVELS
REAL COST» EPFs» MATy SETC, HOLDC, CPUs TOTALs TIME
LOGICAL FLAG» FROBy Ohs NEEDs DNWARD» MOVE
G
780 GO TO (701,702»703+704+703) JFLAG
701 CaLL MEQR ¢ Iy & )
GO 10 790
702 Call. MPOR ¢ Iy A )
GO0 TO 790
703 Call MLTC ¢ Iy A )
GO TO 790
704 Call. SM ( I, &)
GO TQ 790
705 CallL WW ¢ Iy» A)
¥
790 RETURN
END
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SUBROUTINE MFOR ¢ I+ A )

¥
C MPOR ¢ MODIFIED' FERIODIC ORDER QUANTITY
C .
C PROGRAM FARAMETERS
INTEGER Ly Liy L2y L3» L4y Sy FIy NR» NLEVEL
FARAMETER ¢ L=2y Ll= 4, L3= 8y L3= 0rL4=0s8=14yFD=52y
Z NR= Sy NLEVEL= 2 )
C
C
C COMMON RBLOCKS USED
COMMON STRUCT(S-L2s S-L)yTAR(S»3yFD) +COST(2y8)+EFF(298)»
Z MAT(3»8)y SETC(2»S)s HOLDC(2,S), PROR(S)y MOVE,
Z SUMINV(S)y NSETUF(S)»NEED(S)s LEVELS y DINWARL» IFLAG»
Zz CPU(NR+3)y TOTAL(NRs3)s TIMEyr MTIME, ILOOF

INTEGER STRUCT, TAB» Ay Ty SUMINVs NSETUFs LEVELS
REAL COST» EFF» MAT» SETCy HOLIDC, CFUs TOTALs TIME
LOGICAL FLAGs FROEy OK» NEEDY DNWARD MOVE

C LOCAL VARIARLES
INTEGER SUMDEM» QSTARy NSTARy STARTy hs LEM
REAL AVGLEN

C
T = SECOND <)
C
SUMDEH = 0
g 500 7T = 1y FI
SUMDEM = SUMDEM + TAR(I»1,T)

300 CONTINUE
AVGIEM = SUMDEM /7 FD

ASTAR = NINT(SART(2XAVGLEMXSETC(AI)/HOLDC(ALI)))
NSTAR = NINT( QSTAR / AVGIDEM )
FF = EFF ( Ay T )

START = 1
R =1
DEM = 0

10 IF ¢ TAE(Is1,START) EQ, 0 ) THEN
START = START + 1
GO TO 510
ENDIF \
T = START
540 DEM = DEM + TAE(I»1sT)
IF ¢ K +GE. NSTAR ) THEN
550 IF ( DEM ,GT. GSTAR ) THEN
IF ¢ T JERs FI' ) THEN
TAB(Iy3»START )= LEM
G0 TO 590
ENDIF



T= T4 1
K= K+ 4
IFC (K=1)% TAEB(I»1yT) +GT. FP YTHEN
TAR(I+3START)= LEM
T= T- 1
= K= 1
ELSE
TAR([»I»START)= DEM+ TAB(I»1,T)
ENDIIF
ELSE
(F ¢ T +EQ. FI )THEN
TAR(CIy3rSTART)= DEM
GO TO 5920
ENDIXF
h= K+ 1
T T+ 1
IFC (h=1)% TAR(I»1+T) 6T+ FP YTHEN
TABCIyZ»START)= [EM
T= T- 1
ELSE
DEM= DEM+ TAEB(I:1.T)
G0 TO 550
ENDIF
ENLIF
IF¢ U +EQ, FD XG0 TO 590
530 T= T+ 1
IF ( T .ERe PD' ) THEN
TARCI»3yT) = TAB(I»1,T)
G0 TO 590
ELSE
START =T
IF ( TAB(T+1+START)Y +ER. O ) THEN
GO TO 530
ELSE
NEM = 0
N =1
GO TO S40
ENDIF
ENDIF
EL.SE
K=K+ 1
T=T+ 1
IF ¢ T +EQ. PD ) THEN
DEM = DEM + TAER( I+1,T)
TABCT »3+8TART) = DEM
G0 TO 90
ELSE
GO.TO S40 .-
ENDIF
ENDIF
590 CONTINUE

T2 = SECOND ()
TTMF= TO- T1
END
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c SURROUTINE SM ¢ I» & )
C 8-M ¢ SILVER-MEAL HEURISTIC
C
C FPROGRAM FARAMETERS
INTEGER Ly L1y L2y L3y L4y S PIy NR» NLEVEL
FARAMETER ( L=2y Li= 4y L2= 8y L3= 0yL4=0,5=14,FD=52,
Z NR= 5+ NILEVEL= 2 )
COMMON STRUCT(S~L2y S—-L)»TAR(S+»3sPD)yCOST(2sS)1EFF(2+8)
Z MAT(3:5)s SETC(29S)y HOLDIC(2sS)» FROB(S)Y» MOVE,
yA SUMINV(S)y NSETUF(S)NEEDN(S) yLEVELSsINWARTy IFLAG,
Z CPUCNRs3)y TOTALL(NRy3)y TIMEs MTIME, ILOOP

INTEGER STRUCT» TAE» A» T» SUMINVy NSETUFy LEVELS
REAL COST, EFFs MAT, SETC, HOLDC, CFUy TOTALy TIME
LOGICAL FLAG, FROEy Oh» NEEDY DNWARDy MOVE

C LOCAL VARIAELES
INTEGER Zy ORDERy Ky X
REAL G(FID

T1 = SECOND ()

7=

1IER = TAB(Iy1s1)

G(1) = EFF(AYI)

DO 810 T = 1» PO-1

IF ( N JE@s 1 +AND. TAE(I+1,T) LEQs O ) THEN
Z =Tt
ORDER = TAR(Iy1+Z)

GO TO 810
ELSEIF(RKNKTAR(I»1sT+1) . GE.G(N) 2 ANDW T+ NEFI-1) THEN

TAR(I+3+Z) = ORLER
Z=T+ 1
=1
ORDER = TAE(Ir1:Z)
ELSEIF(RKNKTAECIs1yT+1) +GELGCR) +AND . TLEQWFI-1) THEN
TAR(Iy3yZ)= ORDER
TAB(I»37FD)= TAR(I» 1P
ELSEIF(NKNKTABCI»LsTHL) sLTGCR) «ANII, T« NE,PI~1) THEN
K = RK+1
X =T+ 1
ORDER = ORDER+ TAR(Is1:X)
G(R) = G(R=1)+ (R=1)% TAR(I»1sX)
ELSEIF(NKNKTAECI» Ly TH+1) LT G(RN) +AND, T EQRWFI-1) THEN
ORDER = ORDER+ TARCIy1sFIN
TAE(I»3+Z) = ORLER
ENDIF
810 CONTINUE

T2 = SECOND ()
TIME= T2~ T1
FRINTXy/CFU TIME (SM)= ‘» TIME

RETURN
END

R

7O N
] 3
fas
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SUBROUTINE WW ¢ Iy A)
W-W ¢ WAGNER-WHITIN ALGORITHM

C PROGRAM FARAMETERS
INTEGER L» Li» L2y L3y L4y Sy Py NRy NLEVEL
FARAMETER ¢ L=2y Li= 4, L2= 8y L3= 0sLA4=0y8=14,FD=52,
yA NR= Ty NLEVEL= 2 )

00

coMMON BRLOCKS USED
COMMON STRUCT(S~L2» 5-L) s TAR(Sy3yFD) » COST(2y 8 1EFF(2y8) y
Z MAT(3:S)r SETC(2y8)» HOLDC(2,S)» PROB(S)y MOVE,
Z SUMINV(S)y NSETUP(S)sNEEDN(S) » LEVELS» INWARD» IFLAGY
Z CFRUCNRY3)y TOTAL(NR+3)y TIMEs MTIME,» ILOOF

INTEGER STRUCTy+ TAE,» Ay Ty SUMINV, NSETUFy LEVELS
REAL COSTy EFFy MATs SETCy HOLICy CPUs TOTAL» TIME
LOGICAL. FLAGs FROE, OKy NEED, DNWARD'y MOVE

aan

LOCAL VARTARLES
INTEGER by Ns Ms Hr STARTs FLACE(FD)

REAL WACFD,FD)y SMALLy MIN

C
T1 = SECOND ()
C
Do 700 J = 1» FID
ng 710 K = 1+ PO
IF ¢ JLEQ.N +AND. TABCIs1oh)NELO ) THEN
WACJrR) = SETC(AI)
ELSETF ¢ JJEQ.N +AND. TAR(Iy1sK)L.EQ.,Q0 ) THEN
WadJdeN) = 9999999,
ELSE
WACJeNY = 0,
ENDIF
710 CONTINUE

700 CONTINUE
CARRY ING COST ACUMMULATION AND SETUF COST ADDITION
c
o 720 J = 1y FD
g 730 N = J+ils FD
IF (WACJrJd) JEQ. 9999999) THEN
UalJdy )= WACJry )+ KX 92999999

ELSE

WACJIrR)Y = WACIsA~1)+ (N-DIXHOLDC(AsIYRK TAB(I+1+K)
ENDIF
730 CONTINUE
720 CONTINUE

C
C FIND MIN, IN EACH COLUMN AND ADD THIS TO NEXT LOWER ROW

C
no 750 ICOL = 2» PD
WA(2,ICOL) = WAC2,ICOL)+ WA(Ly1)

7590 CONTINUE




760

770
740
c

C STORE SETUF FERIOD IN ARRAY FLACE (PD)

P

w

790
780

782
781

7?1

g 740 K = 2y FD
SMALL = WA(lyK)
N 760 H = 2» W

IF ( SMALL GT.

ENDRIF
CONTINUE
N = Rt 1
ng 770 M = Ny PR

WACNYMY = WAIN'M) + SMALL

CONTINUE
CONT INUE

D0 780 J4 = 1yFD
N = PO+ 1-
MIN = Wa(lsND
FLACE(N)? 1
ng 790 H 2» N

H|

FF ( MIN .GE. WA(HsN) ) THEN

MIN = WA(HsN)
FLACE(N) = H
ENDIF
CONTINUE
CONTIMUE

o 781 J = 1y FD
IFD = PD+ 1~ J
[SET = PLACE(IFL)
IF ¢ 1SET .LT. IPD
IDUR = IFD- ISET
no 782 MWFDL = 1y
FLACE (IFD-MFD)
CONTINUE
ENDITF
CONTINUE

START = 1

WACHYK) ) THEN
SMALL = WA(H,K)

} THEN

IDUR
= ISET

TAB(IL»3s1) = TAB(Is1s1)

n 721 J = 2y PR
K = PLACE(START)

IF ( K +EQs FLACE (J) ) THEN
= TAB(I»3»START I+ TAR(Ir1lsJ)

TAB(I+3ySTART)
ELSE
IF ¢ J +EQ. FD
TAB(I3yJ) =
ELSE
START = J
TAR(I+ 3 START)
ENDIF
ENDTF
CONTINUE

) THEN

TAER(Iv1:Jd)

TAB(I»1:START)
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T2 = SECOND ()
TIME= T2- T1
PRINTX»/CFU TIME (WW)= ‘y TIME

RETURN
END

SURROUTINE MEOR ( Ir A )

MODEOR ¢ MODIFIED VERSION OF ECONOMIC ORDER QUANTITY

FROGRAM FARAMETERS

INTEGER L» L1y L2y L3y L4y Sy Py NRs NLEVEL
FARAMETER ¢ L=2y Li= 4y L2= 8y L3= 0sL4=0+5=14yFD=52>»
NR= s NLEVEL= 2 )

COMMON RLOCKS USED

COMMON STRUCT(S-L2» S-L)sTAR(S»3»FIN»COST(2+8)»EFF(2r8)y
MAT(3:8)y SETC(2yS)y HOLLC(2:8)y» PROER(S)y MOVE,
SUMINV(S)» NSETUF(S)NEEDI(S) »LEVELSy DNWARD IFLAG
CPRUCNRY3)y TOTAL(NR»3)r TIME,» MTIME, ILOOF

INTEGER STRUCT> TAEy A» Ty SUMINV, NSETUF, LEVELS
REAL COST» EFFy MAT, SETC, HOLDC, CFUs TOTAL s, TIME
LOGICAL FLAGy FROEs Ohy NEEDy INWARD» MOVE

LOCAL VARIAEBLES

INTEGER SUMDEM» QSTAR» ORDERs START
REAL AVGDEMy PP

Ti = SECOND ¢)
FF = EFF(A L)

SUMIEM = O
ng 400 7 = 1+ FI

SUMDEM = SUMDEM + TAR(Iy1.T)
CONTINUE

AVGLEM = SUMDEM 7/ FI

QSTAR = NINT( SOQRT( 2% AVGDEMX SETC(AsI1) /HOLDC(A+I)))

00 460 T = 1y FD
IF ( TABC(I»1,T) NE. 0 ) THEN

START = T
G0 TO 461
ENDIF
CONTINUE




461

4463

464

h =1

ORDER = 0

no 470 7 = STARTy FI
IFC¢ TARB(Is1s T LEMW O
IFC TAB(Iy1»T) LEQW O

+AND, K LEQ. 1 ) GO TO 470
+ANDy K WNE. 1 ) GO TO 469

ORIER = ORDER+ TAR(I»1»T)

IF ¢ ORIER .EQ. QSTAR

> THEN

TAR(Is 3y START) = ORDER

LASTAT = START
START = T+ 1

IFC TAB(I+ 1 »START) +EQ. 0 )THEN

START= STARTt 1
IF( 8TART
GO TO 462

ENDIF

N =0

ORDER = ©

+GTy FD YGO TO 470

ELSEIF ( ORDER 6Ty RSTAR) THEN

IF ( (RN=1)% TAR(Iy1+T)

+LE+ PP ) THEN

TAE(I+»3» START) = ORDER

LASTAT = START

IFC T \EQ.FD ) G0 TO 470

START = T+ 1

IFC TABCI » 1+ START)

START= START+ 1

IF( START 6T PD

GO TO 463
ENDIF
N =20
ORDER = O
ELSE

+EQ, 0 HTHEN
3G0 TO 470

ORDER = ORDER- TAERC(I»1.T)
TAE(I»3»START) = ORDER

IFCT JEQs

PD )THEN

TAB(I+3» T)= TAK(I + L+ T)

ELSE
L.ASTAT=START
START= T
1§ = STARTH 1
h= 1

ORDER= TAR(I1T)

IFC TARCI»1+1I8) JEQ. O )THEN

IFC IS

+EQ¢ PR ) THEN

TABC Xy 3+5TART > = ORDER

ELSE
I§= IS+ 1
G0 TO 444
ENDIF
ENDIF
ENIIF
ENDIF

124



ELSETF{ (h-1)% TAB(I+1+T) .GT. FF )THEN
ORDER = ORDER- TAB(Iy1.T)
TAB(I+3+START) = ORIER
IFC T JER. PD )THEN

TAR(Iy3»T)= TAR(Ly1sT)

ELSE
LASTAT= START
START= T
I8 = START+ 1
K= 1
ORIER= TAB(Iy1,T)
465 IFC TAR(I»1,I8) JEQ. O )THEN

IF( IS LEQ. FDI )THEN
TABCI»3,8TART )= ORDER

ELSE
IS= I8+ 1
GO TO 465
ENITF
ENDIF
ENDIF

ELSEIF ( T +EQ. FPI' ) THEN
IF ¢ (T-LASTATIXTAB(I+1yT) +LE, FF )THEN
TAR(Ty 3y LASTAT)= ORDER+ TAR(I+3»LASTAT)
ELSEIFCC T~ START )X TAR(I»1,T) .GT+ FF ) THEN
TAR(ILy 3¢y START)= ORDER~ TAR(I+»1+T)
TAR(Ty3yT) = TAB(I+1sT)
ELSE
TAB(Ly 3y START)= ORDER
ENDIF
G0 TO 470
ENDIF
A469 No= KN+ 1

IFC T +EQs FIV ) TAER(I»3+START)= ORDER
470 CONTINUE

€
C
T2 = SECOND ()
TIME= To- T1
C PRINTKy/CFU TIME (MEOR)= ‘» TIME
C
RETURN
END
SUBROUTINE MLTC ¢ I A )
c
C MODLTC : MODIFIED VERSION OF LEAST TOTAL COST
C

C FROGRAM FPARAMETERS
INTEGER L» L1» L2y L3y L4y Sy POy NR» NLEVEL

FARAMETER ( L=2y Li= 4y L2= 8» L3= 0:L4=0+5=14»PD=52,

Z NR= G» NLEVEL= 2 )
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c
C COMMON BLOCKS USED
COMMON STRUCT(S-L2y S-L)yTAR(Sy3+FD) »COST(2+S)»EFF(2+5)

pA MAT(3+8)y SETC(2s8)y HOLDC(2yS)r FROR(S)» MOVE,
z SUMINV(S), NSETUF(S)sNEED(S) »y LEVELSy INWARL'y IFLAG
Z CRUCNR»3)y TOTAL(NR»3)» TIMEr, MTIME, ILOOF

INTEGER STRUCT: TAE» A» T» SUMINVy NSETUF, LEVELS
REAL COST, EFF, MATy» SETC, HOLDC., CPU, TOTAL - TIME
LOGICAL FLAG» FROEy DK» NEED: DNWARDs MOVE

C LOCAL VARIABLES
INTEGER ORDERy Ky Z
REAL SUM» CUM» FF, ADR

c
Tl = SECOND ()
C
FFP = EFFC(AI)
ORDER = O
h=1
Z =1
CuMm = 0

0 400 T = 1y PO
IF (N +EQs 1 +ANDY TAEC(I»1,T) LEQs O ) THEN
Z =T+
ELSE
AL (K=1)X TAER(I»1,T)
CUM CuM + aADID
IF ¢ ADD LGTs FF ) THEN
TAER(I»3+2Z) = ORDER
%F (TT +EQs FLU ) TAERCI39T) = TAR(I»1:T)
hN=1
ORDER = TAB(I»1:T)
CUM = O
ELSEIF ¢ CUM ,GT. FF ) THEN
IF ((CUM-FF) LT+ (PP~-(CUM~-ADD)))THEN
ORDER= ORDER+ TAE(Is1.T)
TAR(I»3+Z) = ORDER
IF ¢ T +NE+ FD ) THEN
Z =T+ 1
L= 0

iun

ELSE
TAB(I»3+Z2) = ORDER
Z=T
CUM = 0
N =1
ORDER = TAB(I»1:T)
ENDIF
ELSE
ORDER = ORLIER+ TAR(I»1.T)
ENITF
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IF ¢ T +EQs FD ) TAB(I»3+2Z) = ORDER

-K = K¢ -1-
ENDIF
C
400 CONTINUE
C
T2 = SECOND ()
TIME= T2~ T1
(™ FRINT¥»/CFU TIME (MLTC)= ‘y TIME
C
RETURN
END
C
C
("
SUBRROUTINE SUMARY ( I )
Cc
C COMPUTES ON HAND INVENTORY VALUE
C
C PROGRAM FARAMETERS
INTEGER Ly L1s L2y L3y LAy Sy PIy NR» NLEVEL
FARAMETER ¢ L=2y Ll= 4y L2= 8y L3= 0L 4=0Qy8=14yFD=52y
Z NR= Sy NLEVEL= 2 )
C
C
C COMMON RLOCKRS USED
COMMON STRUCT(S~L2y S~L)YsTAR(S»3yFIN+COST(29S)yEFF(29S)
Z MAT(38)y SETC(295)y HOLRC(2:8)» FROR(S): MOVE,
Z SUMINV(S)y NSETUF(S)yNEED(S)LEVELSsINWARIy IFLAGY
y4 CPUCNR»3)y TOTAL(NR»3)s TIME, MTIME., ILOOF
("
INTEGER STRUCTs TAEy Ay Ty SUMINVy NSETUFs LEVELS
REAL COSTy EFFPy MATy SETCy HOLDRC, CFUy TOTALs TIME
.OGICAL FLAG» FHRORs OKs NEED'y DNWARDs MOVE
cC
g 9200 7 = 1» FI
IFC T +GT+ 1 YTHEN
LASTTI= TARB(I»2sT~1)
ELSE
LagTI= @
ENDIF
G
TAR(Iy29T)= LASTI+ TAB(I»3yT)— TARB(Ie1¢T)
C
200 CONTINUE
C
c
RETURN
END

aco
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SUBROUTINE DEMAND ¢ I» IREPLIs ICOEFF )

THE 18T PART ¢ TIME VARYING OR CONSTANT DEMAND ( GIVEN )
THE 2ND FART ¢ UNIFORMLY DISTRIRUTED DEMAND
THE 3RD PART ¢ NORMALLY DISTRIRUTED DEMAND

FROGRAM FARAMETERS
INTEGER Ly L1» L2y L3y L4y Sy PDy NRy NLEVEL
PARAMETER ( L=2, Li= 4y L3= 8y L3= 0sL4=0y8=14,FP0=52>»
Z NR= Gy NLEVEL= 2 )

COMMON ELOCKS USEID
COMMON STRUCT(S~L2» S-L)yTAR(Ss3»FLI)»COST(2yS)yEFF(2s8)y

YA MAT(3:8)» SETC(2:S)y HOLDC(2sS)y FROR(S)» MOVE,
Z SUMINV(S)y NSETUF(S) »NEEDN(S) s LEVELSy INWARLy IFLAG»
Z CRUCNR»3)» TOTAL(NR»3)y TIME, MTIMEs ILOOF

INTEGER STRUCT,» TARs Ay T» SUMINV, NSETUFy LEVELS
REAL COSTy EFFy MATy» SETCy HOLDC, CFUy TOTAL» TIME
LOGICAL FLAG» FROE» OKy NEEDs DNWARD, MOVE

LOCAL VARIARLES
INTEGER NRD ‘
REAL DRC 52 ) |
DOUBLE FRECISION DSEED
DATA NCALL/O/

GIVEN TIME VARYING OR CONSTANT LEMAND
FRINTXy 'TYFE IN DEMANDS FOR ITEM “» I
PRINTH®y FOR THE TIME PERIODS OF ‘+FPD

REAL 301y ( TAEB(IrlsT)» T=1y FD )

01 FORMAT ( 12(I3»1X) )

UNTIFORMLY DISTRIBUTED DEMAND FATTERN

NORMALLY DISTRIRUTED DEMAND FATTERN

CENERATE RANDOM NUMBER EY RANDOM NUMBER GENERATOR
AND' TRANSFORM THIS INTO DEMAND QUANTITY

NRD= FIt

IF¢ NCALL LEQ. O IDSEED= 173541.,D0
NCALL = 1

Baan

Call. GOGNML ¢ DSEEDI'Y NRDy DR )
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GO TO ¢ 31, 32 ) ICOEFF
BOUND= -3,90Q

GO0 TO 334

BOUNIt= ~,50

D0 341 INUM= 1y FD
IF¢ DROINUMY JLE. BOUND )THEN
TABCILy L2 INUMI= 0O
ELSE
IF¢ ICOEFF +EQ. 1 )RMEAN = 50,0
RMEAN = 40.0
TARCIL»LyINUMY= INT( RMEAN%( 1,0- DRCINUM)/ BOUND ))
ENDIF
CONTINUE
RETURN
END

SUBROUTINE COSDATA ( I )

THIS COMPUTES SETUF AND CARRYING COST AND' EFF FOR EACH ITEM
IN THE SYSTEMN.

FROCRAM PARAMETERS

INTEGER L» L1y L2y L3y LAy Sy FDy NRy NLEVEL
FARAMETER ( L=2y Ll= 4y L2= 8» L3= 0:L4=0+8=14yFPD=5D,
Z NR= S, NLEVEL= 2 )

COMMON RLOCKS USED

COMMON STRUCT(S-L2y S-L)yTAR(Sy3sFINyCOST(298)+EFFP(2+5),

Z MAT(3+8)y SETC(2+8)» HOLDC(2yS)s FROR(S)y MOVE,
Z SUMINV(S)y NSETUF(S)»NEED(S)LEVELSyINUARLy IFLAGY
Z CPUNRY3Y» TOTAL(NRy3)>» TIMEy MTIME, ILOOF

INTEGER STRUCT» TARy Ay Ty SUMINVy NSETUF» LEVELS
REAL COST» EPFy MAT» SETC» HOLDCy CRUy TOTAL, TIME
LOGICAL FLAGy FROERs Ohy NEED» DNWARDs MOVE

SETC(L»T) = COST(1»1)
HOLDC(1»I) = COST(2,T)
EPF(1sI) = SETC(1yI)/HOLDCC(LyI)

RETURN
END
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SUBROUTINE MATRIX ( I )

FOR EACH ITEh

c

C THIS COMFUTER EORy AVERAGE DEMANID'» TIME BRETWEEN ORLER
C

C

FROGRAM FARAMETERS

OO0

270

INTEGER Ly L1y L2y L3y L4y S» FIv NRy NLEVEL
FARAMETER ¢ L=D2» L1= 4y L2= 8y LI= 0,L4=0y5=14yFDI=52,
NR= S NLEVEL= 2 )

COMMON RLOCKS USERN

COMMON STRUCT(S-L2y S-L)»TAB(S» 3P sCOST(2+8)+EFF(2:8)
MAT(3+8)y SETC(2+S)» HOLDC(2,S)y FROER(S)s MOVE,
SUMINV(S) sy NSETUF(S)»NEED(S)LEVELSyINWARD y IFLAGY
CPUCNR»3)s TOTAL(MR,3)» TIME» MTIME,» ILOOF

INTEGER STRUCTy TAE» A» T» SUMINV, NSETUFy LEVELS
REAL COST, EFPFs MAT, SETC» HOLDC, CFU, TOTALy TIME
LOGICAL FLAG» FRORs ON» NEED'» DNWARD, MOVE

Tl= SECOND()

IJF ¢ I +GE+ 1 +AND. I JLE. L ) THEN
SUM = 0,40
D0 260 T = 1 FD
SUM = SUM + TAB(I,1,T)
CONTINUE

AVG = UM / PI
MAT(2,I) = AVG
ELSE
0o 270 4 = 1y S-L2
IF ( STRUCT(JsI~L) +NE+ O ) THEN
TUSE = STRUCT(J:I-L)
MAT(Z2»I) = MAT(2yI) + IUSE ¥ MAT(2y0)
ENDIF
CONTINUE
ENDIF

c
C COMPUTE EDR FOR EACH ITEM

C

MATCLyI) = NINT( SQRT( 2% MAT(2yI)% EFPF(1,I)))

C COMPUTE TEO FOR EACH ITEM I

c

c

MATC(3¢I) = MAT(LY» I}/ -MAT(2.1)

T2=SECOND()
MTIME= T2-T1

RETURN
ENI
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SURROUTINE MCLAREN ¢ I )

c

C

¢ SETUP COST ADJUSTMENT MECHANISM ( MC LAREN )
C

C

FROGRAM FPARAMETERS

INTEGER Ly L1y L2y L3y L4y 5 PDy NRy NLEVEL
FARAMETER (¢ L=2y Ll= 4» L2= 8y L3= 0rL4=0+5=14yFD=52,
Z NR= 3y NLEVEL= 2 )

» COMMON BLOCKS USED

COMMON STRUCT(S-L2» S-L)>sTAR(S»3sPI)yCOST(2s8)sEFF(248)y

Z HAT(3+5)y SETC(2y5)y HOLDC(2yS)y FROR(S)y MOVEy
Z SUMINV(S)» NSETUP(S)NEED(S)»LEVELS » INWARD » IFLAG»
Z CPUCNRy3)» TOTALC(NR»3)» TIME, MTIME, ILOOP

INTEGER STRUCTy TAR» A» T» SUMINVy NSETUFPy LEVELS
REAL COST» EPF» MAT, SETCy HOLIICy CFPUs TOTALy TIME
LOGICAL FLAGy FROER» Oh» NEED» DNUWARDYy MOVE

Tl= SECOND()

IF( I oGEo 1 JAND, I +LE, S—L2 )THEN
TEMSUM = 0.0
o 280 J = 1y S-L
IF( STRUCT(I+J) NE, O YTHEN
TEMSUM= TEMSUMt SETC(1,L+J)% MAT(3: 1) /MAT(3sL+J)
IFC J +EQs S-~L ) THEN
SETC(2yI)= SETC(1l:1)+ TEMSUNM
HOLDC(2,I)= HOLDC(1,1I)
ENDIF
ELSEIF( J .EQs S-L )THEN
SETC(2yI)= SETC(1,1I)+ TEMSUM
HOLDEC (2 1)= HOLDC(1:1)
ENDIF
CONTINUE
ELSE
SETC(2yI)= SETC(1,1I)
HOLDC(2»XI)= HOLRC(1,I)
ENDIF

EFF(2+1)= SETC(2:1)/HOLDC(2y1)

T2= SECONDC()
MTIME= T2-T1

RETURN
END
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SUERCQUTINE RECUR ( II )

RECURSION FROCESS IS IONE STARTING FROM THE LOWEST LEVEL
UP TO THE HIGHEST LEVEL

OO0 (1

FROGRAM FARAMETERS
INTEGER Ly L1y L2y L3r L4y Sy FDr NR» NLEVEL
FARAMETER ( L=2y Li= 4y L2= 8y L3= 0rL4=0,5=14yPDI=52,
Z NR= Sy NLEVEL= 2 )

aOaOn

COMMON BLOCKRS USED
COMMON STRUCT(S-L2» S-L) s TAR(S»3I»FIN COST(298) 2EFF(2,8)y
Z MAT(Zy8)» SETC(2»8)y HOLDC(2,S)» FROR(S)» MOVE,
Z SUMINV(S)y NSETUF (S)»NEEDN(S) :LEVELS » INWARL» IFLAG
z CPUCNR»3Y» TOTAL(NRy3)» TIMEy MTIMEs ILOOF

INTEGER STRUCT» TARy» A» T» SUMINVs NSETUFs LEVELS
REAL COST,s EFFy MAT» SETC» HOLRC, CFUy TOTAL, TIME
LOGICAL FLAG» FROEy ONy NEELD» DINWARD, MOVE

C

¢ LOCAL VARIARLES
INTEGER IF(L+L1)D
LOGICAIL. SKTF

c
TL = SECOND() ,
C R
SNIF= ,FALSE.,
IUSE = 0
00 110 J= 1 §-L2
IF( STRUCT(JrII-L) +NE. O )THEN
TUSE= IUSE+ 1
IF(IUSE)=
ENDIF
110  CONTINUE
»
€ RECURSION PROCESS REGINS
c
IF( IUSE .EQ, 1 ) 60 TO 190
G0 TO 290 ,
»
190 IJ= IF(1)
.-~ NSUM= 0

RO 120 T = 1y FD
IF(TAR(I1»2»T) ,ER40) GO TO 120
IFC T +EQ, FD ) GO TO 300
IF( SKIP )THEN
NSUM= NSUM+ TAB(IIy1,T)
IF( NSUM JEQ. ISUM )THEN
SKIP= .FALSE.

NSUM= 0
ENDIF
GO0 TO 120

ENDIF
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IN= T+ 1
IFC TARCII»2yT) JEQ, TAB(II»1,IN))THEN
DEL=SETC(LyIN+(HOLRC(L1»II)—-HOLDCCLyIJ) IXTARCI Jy 32 IN)
IFC DEL +L.T. 0.0 YGO TO 189
TAR(II»1»T)= TARCII»1»T)+ TAR(IXIr1sIN)
TAB(IL»1yIN)= O
TAR(IIy2yT)= ©
TAB(IJr3»T)= TAR(IJ»3»T)+ TAB(IJ»3sIN)
TAB(IJy2yT)= TAR(IJs221)+ TAB(IJy3yIN)
CALL CHANGE ¢ IJs IXIy T» IN)
TAR(IJs 3y IN)= O
NEED(TJ)= ,TRUE.
IF¢ IN LEQ, PD ) GO TO 300

GO TO 120
ELSEIFC TABC(II 2»T) 6T TAB(II»1»IN))ITHEN
ISuM= 0
SkIP= ,TRUE.
ENDIF
CONTINUE
GO TO 300

C WHEN ITEM IS COMMONLY USED FOR MULTIFLE PARENTS

c
290

279

po 220 T= 1+ FPI

IFC TABCII»2yT) LEQ.e O ) GO TO 220
IFC T .EQ. FI ) GO TO 300

IN= T+ 1

IFC TABC(TI»2»T) JEQs TAR(IIs»1sIN) )YTHEN
0o 230 J= 1y IUSE

TJd= IFCD)

IFC TAR(II»1+IN) LEQ, TARB(IJ»3+IN) YTHEN
IFC TABCIJ»39T) LEQs O ) GO TO 220
NEL=SETC(1lyI N+ (HOLOC (1 II)~HOLDC (1 sy I YRTARCIJ»3» IN)
IF¢ DEL LT+ 0,0 )YTHEN

caLl FININ ¢ IJdy IIy Ty INy DEL )
IFC.NOT,. MOVE )THEN
G0 TO 279
ENDIF
ENDIF
TAR(IIv1sT)= TAB(IIv1sT)+ TARCIIs1»IN)
TARB(II»1»IN)= O
TAR(II¢y2,T)= O
TARCIL»3sT)= TAB(IJ»3»T)+ TARCIJy 3+ IN)
TABCIJs29T)= TAB(IJ»2»T)+ TAR(IJs 3¢ IN)
CaLL CHANGE ¢ IJs II: Ty IN))
TABCIJs32INY= O
NEEDCI D)= TRUE,
IFC IN EQ. FD ) GO TO 300
GO TO 220
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ELSEIF(TAB(II»1yINYOT.TAB(IJs3»IN) ,AND,
Z TAR(IJ» 3y IN)GTH0) THEN
IFC TAR(IJ+3»T) LEQ.s O XG0 TO 230
DEL=SETC(1»IJ)+(HOLDCCL» T1)~HOLDC (Ly I YR TAR(I Sy 39 IN)
caLL FIND ¢ IJy II» T» INs DEL )
IF¢C DEL LT+ 0.0 )THEN
IFC +NOT, MOVE )THEN
GO TO 230
ENDIF
ENDITF
TAB(IIsliesT)= TAB(II»1+T)+ TAR(IJ Iy IND
TAB(IIs1lsIN)= TAR(II» 1 INY~ TAR(IJ»3+ IN)
TABR(IIy2yT)= TAR(II»2+T)~ TAB(IJr3rIN)
TAB(IJy3rTi= TAB(IJ»3»yT)+ TARCIJIIVIN)
TAR(TIJ 22 T)= TAR(IJ»29yT)+ TAB(IJsI»IN)
CALL CHANGE ¢ IJy IXIs Ty IN )
TAR(IJyI»INY= O
NEED(IN = TRUE,
ENDIF
CONTINUE
TFC IN JEQ. PI' ) GO TO 300
ELSEIF( TARCII2yT) LGT. TAR(II»1»IN) )>THEN
K= 1
1o 240 IT= 1y 3
IFC TARCIIY1yIN) JNE, 0 XG0 TO 259
TN= INt 1
IF¢ IN EQ, PDY+L ) GO TO 300
K =Rkt 1
CONTINUE
no 250 J= 1y IUSE
IJ= IFCD)
TF(C TABRCII3rINY LGT. 0 )GO TO 220
IFC TARCII 1pIN) JGETAR(IJ»3»IN) , AND,
TAR(IJ» 3+ INYWGTL O )THEN
IFC TAR(IL32TY +EQ. 0 YGO TO 250
DEL=SETC(LyIJ)Y+RR(HOLDC (1 I1)~-HOLDC(1yIJ) )X
TABCL Iy 3y IN)
Coll. FIND ¢ IJs IIs» Ty INs DEL )
IF( DEL LT+ 0.0 )THEN
JIF CWNDT, MOVE ) THEN. -
GO TO 250
ENDINIF
ENNIF
TAR(IIy1LyTI= TAR(IIv1+T)+ TABRC(IJr I IND
TAB(IIy1yINY= TAR(IIy1sIN)~ TAB(IJr3» IN)
TABCIIv2sTI= TAB(IIv 2y T)~ TAB(IJr3sIN)
TARC(II 2y TNY= O
TAR(IJ3yTI= TAR(IJy 3+ T+ TABC(IJr3I2IN)
TAR(IJr2yT)= TAB(IJ»22T)+ TAB(IJy3sIN)
CaLL CHANGE ¢ IJy IX» Ty IN )
TAB(IJr3rINI= O
NEED(IJ)= +TRUE,
IF(C TARLIXI»2»T)Y LJER. O) GO TO 220
ENDIF
CONTINUE
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IN= IN+ 1
ko= K+ 1
G0 10 259
ENDIF
20 CONTINUE

00 T2 = SECOND ()
TIME= T2~ T1
G PRINTX» “CFU TIME (RECUR)= ‘» TIME

RETURN
END

SUBROUTINE CHANGE ( IRy IIy T IN )

C
€
C
C DURING RECURSION FROCESSy SCHEDULE CHANGES ARE DONE FOR OTHER
C RELEVANT ITEMS AT THE SAME TIME
C
¢ PROGRAM FARAMETERS
INTEGER Ly L1s L2y L3y L4y Sy FI'sy NRy NLEVEL
FARAMETER ( L=2y Li= 4y L2= 8y L3= 0vL4=0y5=14yPI=52,
Z NR= Sy NLEVEL= 2 )

COMMON BLOCKS USEI
COMMON STRUCTC(S~L2y S-L) » TAR(S» Iy FINyCOST(29S)1EFF(2+8) y

Z MAT(3»S)y SETC(2+8)y HOLDIC (225)» PROEB(S)» MOVE,
yA SUMINV(S)»y NSETUF(S)»NEER(S)LEVELSs INWARI» IFLAGY
Z CPUNR23)y TOTALC(NRy»3)y TIME, MTIME, ILOOF

iy RwNw

INTEGER STRUCTy TARy Ay T+ SUMINV e NSETUF» LEVELS
REAL COSTy EFFs MAT, SETC» HOLDC, CPUy TOTALy TIME
LOGICAL FLAG, PROEy OKy NEEDy DNWARDy MOVE
C
C LOCAL VARIAERLES
LOGICAL DOWN
C
ng 310 It = 1, §-L
IFC STRUCTC(IR, I JNE. O YTHEN
IG= T4 L
IF¢C IC LT+ II +AND, TDINWARD )GO TO 350
IF¢ IC J,LE, II ) GO TO 210
330 IUNIT= STRUCT(IR,ID)
ISHIFT= IUNITX TAR(IR»3,IN)
TABCICy1»Ti= TAR(ICs LsT)+ ISHIFT
IOWN = JFALSE.,
IF COINWARD e AND W TAE(IC» L TY+NE» TAB(IC» 39 T) ) DOWN=, TRUE »
IFC FPROB(IC)Y JTHEN
GO TO 310
ELSE
TECTARBCIC 2y TYWNELOXTARCIC» 2y T)=TARCICY2» TI-TSHIFT
IDEM= TAR(ICy1:T)+ TAR(IC,2+T)
IF( IDEM JEQ, TAR(CIC,»3yT)> ) GO TO 330

[P Bl w]
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TARCIC»3yT)= TARB(IC»3+T)+ ISHIFT
TARCIC»1sIN)= TAB(IC»1sIN)~ ISHIFT
IF ( DOWN AN, TABCIC3»IN) +NE., O )

Z CALL DOWNCH ¢ ICs T» INs ISHIFT )
JF(TABCIC»3»IN) NELO)TARCICy3» INI=TARCICy3» IMN)~TEHIFT
IF(TABCICYy1yIN)Y JEQ Q. ANDTARCICy3»IN) JNEL Q) THEN

TAB(ICY2yINY= 0
INN= TN+ 1
TARCICy3»INNY= TABCICyI»TNNY+ TAR(II»Z+IN)
TAB(IC»3vyINY= O
ENDIF
ENDIF
ENDIF
CONTINUE
RETURN
END

SURROUTINE FIND ¢ IRy II» T» INs, DEL )

FROGRAM FARAMETERS

INTEGER Ly Liy L2y L3y L4y Sy PIy NR» NLEVEL
FARAMETER ( L=2y Ll= 4y L2= 8y L3= 0yL4=0+S5=14yFP0I=52,
Z NR= 5y NLEVEL= 2 )

COMHON RLOCKS USED

COMMON STRUCT(S-L2» S~L)sTAR(S»3yFD)COST(2yS)yEFF(2+8)
y4 MAT(3,8)» SETC(2y8)y HOLDC(2+5)y FROE(S)y MOVE,

z SUMINV(S)y NSETUF(S) yNEEN(S) y LEVELSy INWARTI» TFLAG»
yA CPUCNRY3)» TOTAL(NR»3)»y TIMNE» MTIME» ILOOF

INTEGER STRUCT» TAEs Ay Ty SUMINU, NSETUF, LEVELS
REAL COST» EFF»y MAT» SETC» HOLDC, CFUs TOTAL, TIME
LOGICAL FLAG» FROEy Ohy NEED'y DNWARD» MOVE

MOVE = ,FALSE.
o 360 10 = 1, S-L
IFC STRUCTC(IRyID) +NE, O )THEN
IC = I L
TFC TC JLE. II ) GO TO 360
IFC IC +GT. IT >THEN
IF(TARCIC» 3y TNY 46T O« ANDTARCIC3»T) . EQ,0) THEN
FROB(IC)= ,TRUE,
ENDIF
IF( TABCIR:3,IN) ,EQ. TARCIC»12IN) AND,
Z TAR(IC: 1 IN) LEQ. TARCICY22T) )THEN
DELTA=(HOLDCC1yIC)~HOLDC(L» IRY IXTAR(IR» 3+ IN)
DEL= DEL+ DELTA
IF ¢ DEL GT. 0.0 J)THEN
MOVE= ,TRUE.
ENDIF
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ENDIF
ENDTF
ENDIF
CONTINUE

RETURN
END

SUBRROUTINE FRINT ¢ I )

FRINT MRF TABLEAU FOR EACH ITEM AND INVENTORY COST RESULTS

PROGRAM FARAMETERS

INTEGER Ls L1y L2» L3y L4y S» FI'' NR» NLEVEL
FARAMETER ( L=2» Ll= 4y L2= 8y L3= 0sL4=0,8=14,FD=52)
Z NR= Sy NLEVEL= 22 )

COMMON ELOCKS USED

COMMON STRUCT(S—L2y S~L)sTAR(Sy3FIN yCOST(29S)yEFF(2+8)y

Z MAT(3,8)» SETC(2y8)y HOLDC(2»5)y FROR(S)y MOVE.
Z SUMINV(S) » NSETUF(S)yNEED(S) s LEVELS y INWARI'y TFLAG
Z CFRU(NR!3Y» TOTAL(NR+3), TIME, MTIME, ILOOF

INTEGER STRUCTy TARy As Ty SUMINV» NSETUFy LEVELS
REAL COST» EFFs MAT,» SETC, HOLDC,» CFPU» TOTAL» TIHME
LOGICAL FLAGy FROEs ONy NEEDy DNWARI» MOVE

LOCAL VARIARLES

INTEGER L.aASTI,» ROW, COL
REAL CARRYC(S)» SETURC(S)

SUMINV(IY = 0
NSETUF(I) = ¢
DO 900 T = 1yFD
IF ¢ T «GT, 1 ) THEN
LASTI = TAR (I:2+T-1)
ELSE
LASTI = 0
ENLIF

TAR(I»2»T) = LASTI+ TAR(I»Z»T)~ TAB(Iy1»T)
SUMINVCI) = SUMINV(I)Y TAE(I+2»T)

IF ( TAR(I+3»T? .NE., 0 ) THEN
NSETUF (I) = NSETUFC(I) + 1
ENIIF

CONTINUE
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FRINT*s ¢ ¢
FPRINT%y / FOR ITEM ’y I
S U 0
DO 910 ROW = 1y =

FRINT 911s ( TARCIyROW,COL)» COL = 1, FI! )

FORMAT (1Xs 12¢1XsI4) )
CONTINUE
R N T 8 e et e e e e e e e e e e e e e e e e e e ,
FRINT*y ¢ *

CARRYC(I)= SUMINV(I) % COST(2,I)
FRINT*»’ CARRYING COST FOR ITEM I ¢ ‘» CARRYC(T)

SETURCC(I) = NSETUF(I) X% COST (i,I)
FRINT*,/ SETUR COST FOR ITEM I !/ SETUPRCC(I)

FRINTX,”

IFC I +ERs 1 )THEN
TOTCAR= 0
TOTSET= 0
TOTC= 0.0

ENDIF

TOTCAR= TOTCAR+ CARRYC(I)
TOTSET= TOTSET+ SETUFC(I)
TOTC= TOTCAR+ TOTSET

IFC I +EQ, S )THEN
PRINTXy»‘ TOTAL CARRYING COST 3 ‘»TOTCAR

FRINT*»’ TOTAL SETUF COST 1 7+ TOTSET
FRINTX»  TOTAL INVENTORY COST & 7»TOTC
TOTALC¢ IFLAG, ILOOF )= TOTC

ENDIF

+0
+ 0

RETURN
END !

SURROUTINE DOWNCH ¢ IC» T» IN» JSHIFT)

FROGRAM FARAMETERS

TNTEGER L» Lis L2y L3» L4» Sy PI NR» NLEVEL
FARAMETER ( L=2» Ll= 4y L2= 8: L3= Q¢sL4=0y8=14yFD=52y
Z NR= Sy NLEVEL= 2 )

COMMON BLOCKS USED

COMMON STRUCT(S-L2y S-L)yTAEB(S»3yFIN) 2 COST(2yS) yEFFP(2+8)
Z MAT(3¢8)y SETC(2+8), HOLDC(2,S), FROE(S)s MOVES,

Z SUMINV(S)» NSETUF(S) y NEED(S) y LEVELSy DNWARDI» IFLAGY
Z CPU(NR,3)s TOTAL(NRs3)» TIMEs MTIME, ILOOF
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INTEGER STRUCT: TARy Ay T» SUMINVy NSETUF, LEVELS
REAL COSTy EPPs MAT» SETC, HOLDC, CPUy TOTAL, TIME
LOGICAL FLAG» FROEy OR» NEEDy DNWARDy MOVE

o 310 IN = 1y S-L
IFC STRUCTC(ICsIN) NE. O )THEN
IG= INt+ L
IUNIT= STRUCT(ICyIK)
RSHIFT= TUNITX JSHIFT
TAR(IGy19T)= TAR(IGY1,T)+ KSHIFT
IF(TARCIGY2y T) W NEJOITAR(IG Y2y T)=TABR(IGY2» T)~RSHIFT
IDEM= TAR(IGy1:T)+ TAR(IGY2»T)
IF( IDEM +EQ. TAR(IG,3+T) ) GO TO 330
TAB(IGy3yT)= TAE(IG:3rT)+ NSHIFT
TARB(IGy1sIN)= TAR(IG»1rIN)~ RSHIFT
IF(TABCIGy3yIN) +NELOITARCIG» 3y IN)=TAR(IG» 3y IN)-RSHIFT
IF( TARCIGY1»IN)LEQ, O +ANID TAR(TIG»3»IN)NE. 0 )THEN
TARCIGY2yIN)= O
INN= IN+ 1
TARCIG»3yINN)= TARCIG»3» INNY+ TAR(II3»IN)
TAR(IG3sIN)= OQ
ENDIF
ENDIF
CONTINUE

RETURN
END

SURRODUTINE FRINOUT

FROGRAM FARAMETERS

TNTEGER Ls L1y L2y L3» L4y Sy PDy NRy NLEVEL
FARAMETER ( L=2y Li= 4y L2= 8y L3= 0rL4=0,8=14,FD=52»
pA NR= Sy NLEVEL= 2 )

COMMON RLOCKS USED

COMMON STRUCT(S-L2y S-L)»TAB(S»3»FIN»COST(2+8)»yEFF(2:8) »

YA MAT(3+8)y SETC(2+8)y HOLDIC(D2,8)y PROB(S)y MOVE:
yA SUMINV(S), NSETUF(S)sNEED(S) » LEVELSyDINWARD» IFLAG,
yA CPU(NRy3)s TOTAL(NR»3)y TIME., MTIME, ILOOF

INTEGER STRUCT»s TAE» A» T» SUMINV, NSETUFs LEVELS
REAL COST, EFFy MATy SETCy HOLDC, CFUy TOTALy TIME
LOGICAL FLAGs FRORy OKNs NEEDy DNWARDy MOVE

LOCAL VARIAERLES

REAL AVGCOS(3)y AVGCFU(I)» FERCOS(S,3)y FERCPU(SY3)»
Z FAVGCO(3)y FAVGCP (3)
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t
oo 600 JCOL=1y 3
AVGCOS (JCOL)= 0.0
AVGCPUCJICOL)= 0.0
FAVGCOCJCOL)= 0.0
FAVGCF(JCOL)= 040
600 CONTINUE
C
0 9200 IROW=1y S
- DO 9200 JCOL=1ly 3
FERCOS (IROW» JCOL)= 0.0
FPERCPU (IROWy JCOLY= 04 O
200 CONTINUE
C FRINT OUT TOTAL INVENTORY COST TAERLE AND TOTAL. CPU TARLE
C COST TARLE
FRINTXy’ “

4630

610

4640

4633
4650

G

¢ CPU

4670

4660

480

FRINT%y/ TOTAL INVENTORY COST TAELE
FRINT*y/
FARINTK p £ oo o o e e e o
PRINTXy / WITH RECUR WITHOUT RECUR  MCLAREN-WHYRARN‘
FIRINTHR p 7 = o e o o o ot o e e
D0 610 IROW= 1r 5

FRINT 630y ( TOTAL( IROWs JCOL )s JCOL= 1+ 3 )

FORMAT ¢ 1Xy 3¢ E20,10 ) )
FIRINT Ry /o oo o e e e e e

CONTINUE
DO 640 IRQW= 1y 5

o 640 JCOL= 1y 3

AVGCOS (JCOLY= TOTALC(IROWYJCOLY/ NR + AVGCOS(JCOL)

CONTLINUE
N0 450 IROW= 1y 1

FRINT 653y ( AVGCOS( JCOL. )y JCOL= 1y 3

FORMAT ¢ 11Xy 3¢ E20,10 3
CONTLNUE

TABLE
PRINTs ¢ *

FRINTXy¢ TOTAL CFU SECOND TARLE’

FRINT®y’ <

FURINT Ry # oo = e e e
PRINT, WITH RECUR WITHOUT RECUR  MCLAREN-WHYEARK
FURRINT R 7 oo e o e o o e 1 e et

10 660 IROW= 1y S
PRINT 470, ( CPUC IROYW, JCOL )y JCOL= L, 3 )

FORMAT ¢ 1X» 3C E20,10 ) )

rs
4

CONTINUE
D0 680 IROW= 1y
no 480 JCOL= 1y 3
AVGCFU (JCOL)Y= CPU (IROWyJCOL)/ NR + AVGCFU(JICOL)

CONTINUE
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DO 490 IROW= 1y 1
FRINT 693, ( AVGCFUC( JCOL )» JCOL= 1, 3 )
FORMAT ¢ 1Xy 3¢ ER0.10 ) )

CONTINUE

PRINTX,»’ 7
PRINT¥y’

nag 700 TROW= iy 5
o 700 JCOL= 1, 3
FERCOS (IROW, JCOL) =TOTAL(IROW, JCOL) /TOTAL (IROW»2) %100
CONTINUE
no 701 JCOL= 1y 3
FAVGCO(JICOL)= AVGCOS(JCOL)/ AVGCOS(2) % 100
CONTTNUE

00 800 IROW= 1y 5
no 800 JCOL= 1y 3
IFC CPUCIROW2)Y JEQ, 0.0 )THEN
FERCPU(IRDOWy JCOL)Y=9929999.,0
G0 TO 800
ENDIF
PERCFU CIROW» JCOL Y= CPU(CIROW,JCOL Y/ CPUCIROWs 2)RK100
CONTINUE
DO 801 JCOL= 1y 3
FAVGCF(JCOL Y= AVUGBCPRUCJICOLY/ AUVUGCRUCD)Y % 100
CONTINUE
FRINT®s’ 7
PFRINT¥y/ ZAGE INVENTORY COST TARLE -
FRINT%s’ “
PP I NT IR £ o= o e o s 1 s et s ot 1t 28t b 0 S = s
FPRINTXy/ W1TH RECUR WITHOUT RECUR MCLAREN-WHYRARK ‘
PRINTE £ o e o o o et e sttt ot ot e e ’
no 710 IROW= 1, &
FRINT 730 ( PERCOS( IROW» JCOL > JCOL= 1y 3 )
FORMAT ¢ 1X» 3¢ E20.10 ) )
FURITINT R Y £ o o e o e o ot S 2 s 5 3 2 e 0

CONTINUE

no 750 IROW= 1y 1
PRINT 763, ( PAVGCOC JCOL ) JCOL= L1y 3 )
FORMAT ¢ 1Xy 3C E20.,10 ) )

CONTINUE

TAELE
FRINTXy’ ¢
FRINT¥»/ ZAGE CFU SECOND TABLE-

FRINTXs’ ¢

PR INT K 3 £ oo o o e ot e e e e e
FRINTXy WITH RECUR WITHOUT RECUR MCLAREN-WHY RARK /

PR INT R p 4 s et e




870

860

893
890

o000

0 860 IROW= 1, 5

FRINT 870, ( PERCFU( IROW, JCOL >y JCOL= 1

FORMAT ¢ 1Xs 3¢ E20,10 ) )
FRINTK s £ = o e e e e e e e e o e e e e e e e e e

CONTINUE
0 890 IROW= 1y 1

PRTNT 893y ( FAVGCR( JCOL )y JCOL= 1,

FORMAT ¢ 1Xy 3C E20,10 ) )

CONTINUE

FRINTXy’
FRINTX» ~

RETURN
END

SUBROUTINE COSTIN

FROGRAM FARAMETERS

INTEGER Ly L1ls L2¢ L3y L4y

3)

Sy FIIy NRsy NLEVEL

3)

142

FARAMETER ¢ L=2y Li1= 4y L2= 8» L3= 0sL4=0sS=14,yFD=52,
Z NR= Sy NLEVEL= 2 )
M
¥
¢ COMMON BRLOCNS USED
COMMON STRUCT(S-L2s S~L)sTABR(Ss3sFD) sCOST(2+8) »EFF(2yS)y
A MAT(3+8)y SETC(2:8)s HOLDC(2:8)y FROR(S)y HOVE,
A SUMINV(S) sy NSETUF(S) yNEEL(S) y LEVELS s INWARI TFLAG »
Z CFRUCNRY3)y TOTAL(NR»3)y TIMEs MTIME., ILOOF
C
INTEGER STRUCT, TAE» A» T» SUMINV, NSETUF» LEVELS
REAL COST», EFPy MAT, SETC, HOLDC, CFUy TOTALy TIME
LOGICAL FLAG,» PROE, OKNy NEEID, DNWARD» MOVE
C
C LOCAL VARIAELE
INTEGER NRC» NRS
REAL CR(&6)» SR(14)
DOURLE FRECISION DSEED
(M
C PROVIDES RANNOMIZED COST PARAMETER SET
C PER RUN
C
G
NRC= 6

NSEEN= $4$$%$%.00
CALL GGURS ( DSEEIs

NRC »

CR

)




310

344
340

o 310 I= S-L24+1, 8
COST(2y1)= 3
CONTINUE

no 320 1= L+l S-L2

SUMCA= 0.0

no 322 J= Li+ls S-L
IF¢ STRUCTC(I+J> NE., O )YTHEN

SUMCA= SUMCA+ COST(2» 4L

ENDIF

CONTINUE

IF¢ CR(I) JGE. .67 YTHEN
RECH= .1
G0 TO 324

ELSEIF ( CR(I)Y +GE., .33 YTHEN
RECH= ,2
GO TO 324

CLSE
RECH= .3
00 TO 324

ENDIF

COST(2,I)= RECH+ SUMCA

CONTINUE

00 340 T= 1,2
SUMCA= 0.0
o 342 J= 1» L1
IFC¢ STRUCTC(T »J) JNE, 0 YTHEN
SUMCA= SUMCA+ COST(2y JHLD)
ENDIF
CONTINUE

IF¢ CR(I) JGE. +47 )THEN
REGH= ,2
GO TO 344

ELSETF( CR(IY +GE. .33 YTHEN
RECH= .4
GO TO 344

ELSE
RECH= ,é
GO TO 344

ENDIF

COST(2+1)= RECH+ SUMCA
CONTINUE
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OO0 0¢

jap oo

362
3460

GENERATE SETUF COST PARAMETERS FOR THE SYSTEM

NRS= 14
DSEED= $5$%$%%% .00
CALL GGURS( DSEEDY NRSs SR )

BASE= 75,0% COST( 2y1)

g 360 I= 1y 8

IF( 8R(I) JGE. +67 )THEN
SR3= G0
G0 TO 342

ELSEIFC SR(I) +GE+ +33 )THEN
SR3= 70
G0 70 342

ELSE
SR3= 20
GO TO 342

ENDIF

COST(1sI)= 8R3
CONTINUE

RETURN
END
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